材料力学拉伸、压缩与剪切
- 格式:ppt
- 大小:2.58 MB
- 文档页数:35
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
一、拉(压)杆强度条件:--------(1)二、(剪切)切应力条件和挤压强度条件1.切应力强度条件:τ --------(2)2.挤压强度条件:--------(3)三、圆轴扭转时的强度和刚度条件资料个人收集整理,勿做商业用途1.扭转强度条件:-----------(4)----------------(5)2.扭转刚度条件:-----------(6)----------------(7)四:弯曲正应力强度条件:------(8)符号释义:1.:正应力2. τ:切应力3.T:扭矩4.:轴力5.:剪切力6.7.A:剪切截面面积8.:抗扭截面系数9.:横截面对圆心的极惯性矩10.y: 正应力到中性轴的距离11.ε:正应变(线应变) 三个弹性材料的关系:1.E:弹性模量(GN/m²)2. μ:为泊松比(钢材的μ为0.25-0.33)3.G:剪切弹性模量(GN/m²)剪切胡可定律:τ=Gγ16.E:抗拉刚度17.胡可定律:σ=Eεσ=E18.ρ:曲率半径19.:梁弯曲变形后的曲率20.M:弯矩轴力、剪切力、均为内力求内力的方法-截面法:1.假想沿m-m横截面将杆件切开2.留下左半端或右半段3.将弃去部分对留下部分的作用(力)用内力代替4.对留下部分写平衡方程,求出内力的值。
当你选择好研究对象时,建立坐标系,这个对象的所有受力的x方向的代数和,和y方向的代数和为零,这就建立平衡方程,【me=o】,就是你在研究对象上选取一个点作为支点,然后所有力对这个点取矩,顺时针和逆时针方向的代数和为零,这样就分别建立三个平衡方程,可以联立接触其中未知数,这种情况只是用于解决静定结构的。
12.γ:切应变(角应变)21.:外力偶矩13.EA:抗拉强度(钢材的EA约为200GPa)14.δ:断后伸长率15.ψ:断面收缩率/相对扭转角梁受力有:轴力、剪切力和弯矩M。
一、材料力学的几个基本感念1.构件:工程结构或机械的每一组成部分。
班级 学号 姓名1 试求图示杆件1-1、2-2、3-3横截面上的轴力,并作轴力图。
2、油缸盖与缸体采用6个螺栓连接,如图示。
已知油缸内径D=350mm ,油压p=1MPa 。
若螺栓材料许用应力[ ]=40MPa ,求螺栓的内径。
题1图140 kN 30 kN20 kN122 33班级 学号 姓名3 图示木制桁架受水平力P 作用。
已知P=80kN[][]MPa MPa 10,8==压拉σσ,试设计AB 、AD 两杆的横截面积。
4 图示结构,杆1、2的横截面均为圆形,直径分别为d 1=30mm , d 2=20mm 。
两杆材料相同,许用应力[σ]=160MPa ,在节点A 处受铅直力P=80kN 。
试校核结构的强度。
A B C D P60° 60° 30° 30°BC A P 12 30° 45°班级学号 姓名5、某铣床工作台进给油缸如图示,缸内油压p=2MPa ,油缸内径D=75mm ,活塞杆直径 d=18mm 。
已知活塞材料的许用应力[σ]=50MPa ,试校核活塞杆的强度。
6、简易吊车如图所示。
AB 为木杆,横截面积 21cm 100=A ,许用压应力[]MPa 71=σ。
BC 为钢杆,横截面积22cm 6=A ,许用拉应力[]MPa 1602=σ。
试求许可吊重F 。
F30°AB C木杆 钢杆第二章 拉伸、压缩和剪切班级 学号 姓名7、 图示拉杆沿斜截面m -m 由两部分胶合而成。
设在胶合面上许用拉应力[]MPa 100=σ,许用切应力[]MPa 50=τ,并设胶合面的强度控制杆件的拉力。
试问:为使杆件承受最大拉力F ,α角的值应为多少?若杆件横截面面积为4cm 2,并规定α≤60°,试确定许可载荷F 。
8、变截面杆如图所示。
已知:21cm 8=A ,22cm 4=A , GPa 200=E 。
试求杆的总伸长l ∆。
材料力学拉伸压缩与剪切材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
在材料力学中,拉伸、压缩和剪切是三种常见的受力方式。
本文将对这三种受力方式进行详细的讨论。
一、拉伸拉伸是将材料的两个端点向相反方向施加力,使材料产生变形和应力的一种受力方式。
在拉伸过程中,应力沿受力方向逐渐递增,直到材料达到其抗拉极限,引起断裂。
拉伸强度是指材料在拉伸过程中所能承受的最大伸长应力,常用于评价材料的抗拉性能。
材料在拉伸过程中会发生塑性变形和弹性变形。
当应力较小时,材料发生弹性变形,即材料在去除应力后能恢复原状。
当应力较大时,材料发生塑性变形,即材料变形后无法完全恢复原状。
材料的塑性变形通常伴随着颈缩现象,即材料在拉伸过程中发生细颈,最终引起断裂。
在拉伸过程中,材料的变形主要通过断裂面的拉伸和滑移来实现。
断裂面的拉伸是指材料在拉伸过程中,沿断裂面发生直接断裂的现象。
滑移是指材料分子、原子或晶粒之间发生相对滑动的行为。
材料的拉伸性能主要由断裂面的塑性变形和滑移行为共同决定。
二、压缩压缩是将材料的两个端点向相同方向施加力,使材料产生变形和应力的一种受力方式。
在压缩过程中,材料的体积减小,应力沿受力方向逐渐递增,直到材料达到其抗压极限,引起破坏。
抗压强度是指材料在压缩过程中所能承受的最大应力,常用于评价材料的抗压性能。
与拉伸不同,材料在正常应力下的压缩变形主要是弹性变形。
材料在压缩过程中会呈现出不同的弹性阶段,即初期弹性阶段、线弹性阶段和屈服弹性阶段。
初期弹性阶段材料呈现出线性弹性变形;线弹性阶段材料呈现出弹性变形,但变形量不再是线性增加;屈服弹性阶段材料呈现出应力和应变之间非线性关系。
三、剪切剪切是指材料在外力作用下,造成平行于断裂面的错切运动和应力的一种受力方式。
在剪切过程中,材料发生剪切变形,即材料平行于受力方向发生错开运动。
剪切强度是指材料在剪切过程中所能承受的最大剪应力,常用于评价材料的剪切性能。
材料的剪切变形属于塑性变形,主要发生在晶体或晶体之间的滑移面上。