《机械原理》拉伸压缩与剪切解析
- 格式:ppt
- 大小:2.75 MB
- 文档页数:90
第二章拉伸、压缩与剪切§2-1 轴向拉压的概念及实例§2-2 轴向拉压的内力§2-3 应力及强度条件§2-4 材料在拉伸和压缩时的力学性能§2-5 拉压杆的变形计算§2-6 拉压超静定问题§2-7 剪切与挤压1§2-1轴向拉压的概念及实例一、工程实例234三、变形特点二、受力特点四、计算简图FFFF轴向压缩轴向拉伸外力的合力作用线与杆的轴线重合。
沿轴向伸长或缩短。
5mmFF一、求内力设一等直杆在两端轴向拉力F 的作用下处于平衡,欲求杆件横截面m -m 上的内力.§2–2轴向拉压的内力在求内力的截面m-m 处,假想地将杆截为两部分.取左部分部分作为研究对象。
弃去部分对研究对象的作用以截开面上的内力代替,合力为FN 。
mmF F N1、截面法求内力(1)截开mmF F (2)代替67对研究对象列平衡方程F N = F式中:F N 为杆件任一横截面m -m 上的内力.与杆的轴线重合,即垂直于横截面并通过其形心,称为轴力。
(3)平衡mm FFm mFF N若取右侧为研究对象,则在截开面上的轴力与部分左侧上的轴力数值相等而指向相反.mmF FmmF F NmFmNF′892.轴力符号的规定mFFm mFF NmFm(1)若轴力的方向背离截面,则规定为正的,称为拉力。
(2)若轴力的方向指向截面,则规定为负的,称为压力。
NF ′以拉为正m10二、轴力图用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为轴力图。
将正的轴力画在x 轴上侧,负的画在x 轴下侧.xF NOFFF ⊕11例题1一等直杆其受力情况如图所示,作杆的轴力图。
CABD 600300500400E40kN55kN 25kN 20kN12CABD 600300500400E40kN55kN 25kN 20kN CABDE40kN 55kN 25kN 20kN F R A解: 求支座反力202555400R =+−+−−=∑A xF FkN10R =A F13求AB 段内的轴力F R A F N1CABDE40kN 55kN 25kN 20kN F R A1R 1N =−A F F )()kN (10R 1N ++==A F F14求BC 段内的轴力F R A40kNF N220kN CABDE40kN 55kN 25kN F R A2040R 2N =−−A F F )()kN (5040R 2N ++=+=A F F15F N3求CD 段内的轴力20kN25kNCABDE40kN55kN 25kN20kN F R A3020253=+−−N F )()kN (53N −−=F16求DE 段内的轴力20kNF N440kN55kN 25kN20kN F R A4)((kN)204N ++=F CABDE17F N1=10kN (拉力)F N2=50kN (拉力)F N3= -5kN (压力)F N4=20kN (拉力)发生在BC 段内任一横截面上5010520++CABD 600300500400E40kN55kN 25kN 20kN (kN)50Nmax =F185kN8kN4kN1kNO练习:作图示杆的轴力图。
材料力学拉伸压缩与剪切材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
在材料力学中,拉伸、压缩和剪切是三种常见的受力方式。
本文将对这三种受力方式进行详细的讨论。
一、拉伸拉伸是将材料的两个端点向相反方向施加力,使材料产生变形和应力的一种受力方式。
在拉伸过程中,应力沿受力方向逐渐递增,直到材料达到其抗拉极限,引起断裂。
拉伸强度是指材料在拉伸过程中所能承受的最大伸长应力,常用于评价材料的抗拉性能。
材料在拉伸过程中会发生塑性变形和弹性变形。
当应力较小时,材料发生弹性变形,即材料在去除应力后能恢复原状。
当应力较大时,材料发生塑性变形,即材料变形后无法完全恢复原状。
材料的塑性变形通常伴随着颈缩现象,即材料在拉伸过程中发生细颈,最终引起断裂。
在拉伸过程中,材料的变形主要通过断裂面的拉伸和滑移来实现。
断裂面的拉伸是指材料在拉伸过程中,沿断裂面发生直接断裂的现象。
滑移是指材料分子、原子或晶粒之间发生相对滑动的行为。
材料的拉伸性能主要由断裂面的塑性变形和滑移行为共同决定。
二、压缩压缩是将材料的两个端点向相同方向施加力,使材料产生变形和应力的一种受力方式。
在压缩过程中,材料的体积减小,应力沿受力方向逐渐递增,直到材料达到其抗压极限,引起破坏。
抗压强度是指材料在压缩过程中所能承受的最大应力,常用于评价材料的抗压性能。
与拉伸不同,材料在正常应力下的压缩变形主要是弹性变形。
材料在压缩过程中会呈现出不同的弹性阶段,即初期弹性阶段、线弹性阶段和屈服弹性阶段。
初期弹性阶段材料呈现出线性弹性变形;线弹性阶段材料呈现出弹性变形,但变形量不再是线性增加;屈服弹性阶段材料呈现出应力和应变之间非线性关系。
三、剪切剪切是指材料在外力作用下,造成平行于断裂面的错切运动和应力的一种受力方式。
在剪切过程中,材料发生剪切变形,即材料平行于受力方向发生错开运动。
剪切强度是指材料在剪切过程中所能承受的最大剪应力,常用于评价材料的剪切性能。
材料的剪切变形属于塑性变形,主要发生在晶体或晶体之间的滑移面上。
第二章拉伸、压缩与剪切小结一、轴向拉压杆的内力轴力轴向拉压时,杆件横截面上内力的合力,用FN 表示。
轴力正负号的规定杆件受拉而伸长的轴力为正,受压而缩短的轴力为负。
或者表述为FN 的方向与截面外法线方向一致的为正,反之为负。
轴力的求法截面法,一般将所求截面的内力假设为正的数值,这一方法称为“设正法”。
如结果为正,则说明假设正确,是拉力;如是负值,则说明假设错误,是压力。
轴力图注意:1.轴力图与杆件应注意一一对应关系,习惯上在其值变化的角点标出数值;2.作图或校核时注意应用突变关系,即在外力作用面,轴力图突变,突变值(绝对值)的大小等于作用在该面的外力的大小;3.同一图应采用同一比例;二、应力1)横截面上的应力平面假设:变形前为平面的横截面,变形后仍保持为平面且仍垂直于轴线。
由材料的假设可知,轴向拉压杆横截面上各点的应力相等,垂直于截面,用表示,即:使用条件:①外力的合力作用线必须与杆件轴线重合②当杆件的横截面沿轴线方向变化缓慢,而且外力作用线与杆件轴线重合时,也可近似地应用该公式。
③不适用于集中力作用点附近的区域圣维南原理:作用于弹性体上某一局部区域内的外力系,可以用与它静力等效的力系来代替。
σNF Aσ=2)斜截面上的应力轴向拉压时斜截面上的应力随其方位而变化总应力:正应力:切应力:三、材料的力学性能1)低碳钢拉伸4个阶段:弹性阶段、屈服(流动)阶段、强化阶段、局部变形(颈缩)阶段。
4个极限应力:比例极限,弹性极限,屈服极限,强度极限两个塑性指标:延伸率和断面收缩率一个弹性模量ασααcos cos ==AF p ασασαα2cos cos ==p ασαταα2sin 2sin ==p %1001⨯-=ll l δ%1001⨯-=A A A ψE σε=2)其它材料的拉伸3)材料压缩时的力学性能塑性材料压缩时的力学性质与拉伸时的基本无异。
脆性材料拉、压力学性能有较大差别,抗压能力明显高于抗拉能力。