初一数学线段的长短比较学案
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
(实际生活经验的小视频引入引发学生的兴趣,根据学生的生活经验东知道中间的路线最短,教师要提出疑问,你能用数学道理来解释吗?这节课我们一起来探究一下,引出下一个问题)二、探究学习如右图,从A地到C地有四条道路,那条路最近?你发现了什么规律?结论:线段的性质两点之间的所有连线中,线段最短。
简述为两点之间线段最短。
两点之间线段的长度叫做两点之间的距离。
学以致用:刚才的视频说明的数学道理你知道了么?请同学回答。
三、合作学习:活动一:请两位学生比身高,让学生说明理由。
教师引入你能比较两条线段的长短吗?动动手,小组合作:各小组拿着你们手中的绳子与其他同学的进行比较,看看谁的长,谁的短?并且思考怎样比较两条线段的长短?学生思考并回答结论:1.把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,这种方法叫做叠合法。
2.用刻度尺量出它们的长度,再进行比较,这种方法叫做度量法。
3.说明:如果两条线段相差很大,直接视察就可以进行比较了。
学以致用:怎样比较下面两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?( ) ( ) ( )活动二:1.什么是尺规作图?2.小组合作交流,试一试用尺规做一条线段等于已知直线。
尺规作图 :只用没有刻度的直尺和圆规画图称为尺规作图教师引导学生:作一条线段等于已知线段如图,已知线段AB,用尺规作一条线段等于已知线段AB.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A ′C ′上截取A ′B ′=AB.线段A ′B ′就是所求作的线段.活动三:想一想,折一折,怎样找到你手上绳子的中点位置?点M 把线段AB 分成相等的两条线段AM 与BM, 点M 叫做线段AB 的中点.表达式:如果点M 是线段AB 的中点, 那么AM=BM= ( 21) AB. 或者AB=2AM=2BM 练习:如图示:点C 为AB 的中点,AC=3cm ,则BC=() cm ,AB=()cm 。
线段的长短比较教案一、教学目标1. 让学生掌握线段的定义及基本属性。
2. 培养学生观察、比较、推理的能力,提高空间想象力。
3. 培养学生合作学习、积极参与的精神。
二、教学内容1. 线段的定义及基本属性。
2. 比较线段的长短。
三、教学重点与难点1. 教学重点:线段的定义及基本属性,线段的比较方法。
2. 教学难点:如何准确、快速地比较线段的长短。
四、教学方法1. 采用直观演示法,让学生通过观察、操作,理解线段的定义及基本属性。
2. 采用比较法,让学生通过实践操作,掌握线段的长短比较方法。
3. 采用小组合作学习,培养学生的团队协作能力。
五、教学准备1. 教具:线段模型、直尺、画图工具。
2. 学具:每位学生准备一套线段模型、直尺、画图工具。
六、教学过程1. 导入新课:通过复习上节课的内容,引出本节课的主题——线段的长短比较。
2. 讲解线段的定义及基本属性:线段的定义,线段的长度、起点和终点。
3. 演示线段的长短比较方法:通过直观演示,让学生掌握比较线段长短的方法。
4. 实践操作:学生分组进行线段长短比较的实践操作,教师巡回指导。
七、课堂练习1. 让学生独立完成线段长短比较的练习题,巩固所学知识。
2. 教师选取部分学生的作品进行展示,评价学生的学习效果。
八、拓展延伸1. 引导学生思考:线段的长短比较在实际生活中的应用。
2. 学生分享生活实例,加深对线段长短比较知识的理解。
九、课堂小结2. 强调线段长短比较在实际生活中的重要性。
十、课后作业1. 让学生完成课后练习题,巩固线段长短比较的知识。
2. 鼓励学生在生活中观察、运用线段长短比较的知识。
六、教学活动1. 小组讨论:让学生分组讨论线段在实际生活中的应用,例如测量物品长度、规划路线等。
2. 分享成果:每组选取一名代表分享讨论成果,其他组成员可进行补充。
七、案例分析1. 教师展示线段长短比较在实际案例中的应用,如建筑设计、电路布线等。
2. 学生分析案例中线段长短比较的方法和原理。
2 比较线段的长短●情景导入 同学们请看大屏幕,认识他们吗?我们目测一下他们的身高,发现姚明高一些.那要是让潘长江老师站到二楼上,姚明站在地面上呢? 如果我们用线段来表示人的身高,又如何比较线段的长短呢?从而引入课题.【教学与建议】教学:把现实生活中的比高矮问题抽象成线段比较长短问题,激发学生解决问题的热情.建议:重点让学生明白两条线段长短的比较方法.●置疑导入 师:如图,从A 村到B 村有四条道路可供选择,你愿意选第几条道路?说出你的理由. 生:走第②条路.因为这条路是直路,感觉它最近.师:虽说条条大路通罗马,但我们都希望走条近路.那么怎样找出最近的路呢?你是怎样得出结论的? 【教学与建议】教学:利用生活中熟悉的情境,极大地激发学生的学习热情.建议:在学生操作时,教师要引导学生进行思考、分析.*命题角度1 利用两点之间线段最短解决问题根据两点之间的所有连线中,线段最短,解决实际问题.【例1】在春季运动会上,七年级的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法是(A)A .把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B .把两条绳子重合,观察另一端的情况C .把两条绳子接在一起D .没有办法挑选【例2】为抄近路践踏草坪是一种不文明现象,如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条“捷径”,“捷径”的数学道理是(C)A.经过两点有一条直线,并且只有一条直线B .两条直线相交只有一个交点C .两点之间的所有连线中,线段最短D .两点之间线段的长度,叫做这两点之间的距离【例3】把一条弯曲的河道改直,可以缩短航程,这样做的根据是__两点之间线段最短__. *命题角度2 比较线段的长短比较线段长度常用的方法有两种:(1)度量法;(2)叠合法. 【例4】用度量法可得下列线段中最长的是(B)A BC D *命题角度3 线段中点的概念辨析中点具备两个特点:①点在线段上;②把线段分成相等的两条线段,这两者缺一不可. 【例5】如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是(C)A .BC =AB -CD B .BC =AC -BDC .BC =12 (AD -CD ) D .BC =12AD -CD【例6】已知线段AB 和点P ,如果P A +PB =AB ,且P A =PB ,则(A) A .点P 为AB 中点 B .点P 在线段AB 的延长线上C .点P 在线段AB 外D .无法确定 *命题角度4 求线段的长度求线段长度,通常借助线段中点的性质和线段的比进行线段长度的变换进行求解.【例7】如图,长度为12 cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC ∶CB =1∶2,则线段AC 的长度为(A)A .8 cmB .6 cmC .4 cmD .2 cm【例8】如图,B ,C 两点把线段AD 分成长度比为2∶3∶4的三部分,点E 是线段AD 的中点,EC =2 cm ,求:(1)AD 的长; (2)AB ∶BE .解:(1)因为AB ∶BC ∶CD =2∶3∶4,点E 是线段AD 的中点,所以CD =49 AD ,ED =12AD ,所以EC =ED-CD =12 AD -49 AD =2,解得AD =36 cm ;(2)由(1)知,AD =36 cm ,易得AB =36×29 =8(cm),BC =36×39=12(cm),BE =BC -EC =12-2=10(cm).所以AB ∶BE =8∶10=4∶5.高效课堂 教学设计1.借助情境了解“两点之间线段最短”的性质. 2.能借助尺、规等工具比较两条线段的大小. 3.能用圆规作一条线段等于已知线段.线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.叠合法比较两条线段大小;会画一条线段等于已知线段.活动一:创设情境 导入新课(课件:公园曲桥、河道改直的图片)把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?活动二:实践探究 交流新知 【探究1】 线段公理问题:(多媒体投影P 110图4-6)学生通过观察,实际操作,容易得出线段AC 最短.【归纳】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.【探究2】 线段的比较多媒体展示P 110“议一议”【归纳】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.活动三:开放训练 应用举例【例1】(教材P 111例题)如图,已知线段AB ,用尺规作一条线段等于已知线段AB . 【方法指导】学生通过操作,掌握作一条线段等于已知线段的方法.解:作图步骤如下:(1)作射线A ′C ′(如图所示);(2)用圆规在射线A ′C ′上截取A ′B ′=AB . 线段A ′B ′就是所求作的线段.【例2】(1)如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点.这时AM =BM =12 AB (或AB =2AM =2BM ).(2)在直线l 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm.如果点O 是线段AC 的中点,那么线段OB 的长度是多少?【方法指导】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质. 解:如图所示:OB =4-4+32=0.5(cm).活动四:随堂练习1.如图,在我国“西气东输”的过程中,从A 城市往B 城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是__①__,依据是__两点之间线段最短__.2.已知线段AB =6 cm ,在直线AB 上取点C ,使BC =3 cm ,则线段AC 的长是__9或3__cm. 3.教材第112页上方的“随堂练习”第1题. 解:可用刻度尺量出折线AB 各段线段的长度,再量出线段A ′B ′的长度.将折线AB 各段线段的长度和与A ′B ′的长度作比较,也可用尺规作图法将AB 的每段长度移到线段A ′B ′上,再做判断.4.教材第112页上方的“随堂练习”第2题.解:5.已知线段AB =6,点C 在直线AB 上,BC =4,D 是AC 的中点,那么A ,D 两点间的距离是多少? 解:5或1.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?教学说明:教师引导学生回顾线段的公理,线段的比较,线段的中点等知识,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.作业:课本P 112习题4.2中的T 2、T 3、T 4本节课的内容是比较线段的长短,这涉及线段的度量和比较,是几何中的一个基本问题.在教学过程中,把身边的数学材料引入课堂,从而使原来枯燥无味的讲解转变为生动活泼的学习活动,调动了学生学习的积极性,加深了学生对几何知识的理解,从而达到了很好的教学效果,同时也培养了学生分析问题、解决问题、应用数学知识的能力.。
4.2比较线段的长短
如图,从A地到C地有四条道路,哪条路最近?
学习准备
1.(1)可表示为线段(或)或者线
段.
2.请同学们阅读教材第2节《比较线段的长短》,并完成随堂练习和习题.
教材精读
1.线段的性质:两点之间的所有连线中,线段最短.简单地说:两点之间,线段最短.
2.线段大小的比较方法
(1)观察法;(2)叠合法;(3)度量法.
3.线段的中点
线段的中点是指在线段上且把线段分成相等的两条线段的点.线段的中点只有1个.
文字语言:点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点.
用几何语言表示:
因为点M是线段AB的中点,
所以AM=BM=1
AB(或AB=2AM=2BM).
2
教材拓展
已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,D是AC的中点,求
CD的长?
分析:点A,B,C在同一条直线上,点C有两种可能:(1)点C在线段AB的延
长线上;(2)点C在线段AB上.
续表
是热点问题.
1.如图,直线上四点A,B,C,D,看图填空:
①AC=+BC;②CD=AD;③AC+BDBC=.
2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.
(1)当C在线段AB上时,AC=.
(2)当C在线段AB的延长线上时,AC=.
3.如图,AB=20 cm,C是AB上一点,且AC=12 cm,D是AC的中点,E是BC的
中点,求线段DE的长.
4.已知:如图,B,C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,
求线段MC的长.
5.如图所示:。
比较线段的长短北师大版数学初一上册教案一、教学内容本节课选自北师大版数学初一上册第二章《直线与线段》的第一节“比较线段的长短”。
具体内容包括:理解线段的概念,掌握线段的表示方法,学会比较两条线段的长短,通过实践活动,培养观察能力和动手操作能力。
二、教学目标1. 知识与技能:理解并掌握线段的概念,能够准确地表示线段,学会比较两条线段的长短。
2. 过程与方法:通过实践情景引入,培养学生观察、分析、解决问题的能力,提高学生的动手操作能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流的意识。
三、教学难点与重点重点:线段的概念及表示方法,比较线段的长短。
难点:如何准确地比较两条线段的长短。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规、三角板、教学课件。
2. 学具:直尺、圆规、三角板、练习本。
五、教学过程1. 实践情景引入利用绳子、直尺等教具,现场演示如何测量物体的长度,引导学生关注线段的概念。
2. 知识讲解(1)线段的概念:线段是由两个端点及这两个端点之间的所有点组成的。
(2)线段的表示:用两个端点的字母表示,如线段AB。
(3)比较线段的长短:通过观察、测量、折叠等方法,比较两条线段的长短。
3. 例题讲解(1)题目:比较线段AB和CD的长短。
(2)分析:观察两条线段的长度,可通过直尺测量或折叠比较。
(3)解答:线段AB比线段CD长。
4. 随堂练习让学生分组合作,利用直尺、圆规等工具,测量并比较给定线段的长短。
六、板书设计1. 线段的概念2. 线段的表示方法3. 比较线段的长短方法七、作业设计(1)线段AB和线段CD(2)线段MN和线段PQ2. 答案:(1)线段AB比线段CD长,通过测量可得。
(2)线段MN和线段PQ等长,通过折叠可得。
八、课后反思及拓展延伸1. 反思:本节课学生对线段的概念和表示方法的掌握情况较好,但在比较线段长短的方法上还需加强练习。
2. 拓展延伸:让学生尝试用三角板、圆规等工具,设计一些有关线段的题目,进行交流和分享。
湘教版数学七年级上册4.2《线段的长短比较》教学设计一. 教材分析《线段的长短比较》是湘教版数学七年级上册4.2节的内容,这部分内容是在学习了直线、射线、线段的基础上,引导学生进一步探究线段的长度,学会用工具尺子和直尺来测量线段的长度,并比较线段的长短。
教材通过实例和练习,让学生掌握线段长度的测量方法和比较方法,培养学生的操作能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对线段有了一定的了解。
但是,学生可能对线段长度的测量和比较方法还不够熟悉。
因此,在教学过程中,教师需要通过实例和练习,引导学生掌握测量和比较线段长度的方法,提高学生的操作能力和空间想象能力。
三. 教学目标1.知识与技能目标:让学生掌握用尺子和直尺测量线段长度的方法,学会比较线段的长短,提高学生的操作能力。
2.过程与方法目标:通过实例和练习,培养学生的空间想象能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生团结协作、积极思考的良好学习习惯。
四. 教学重难点1.重点:用尺子和直尺测量线段长度的方法,比较线段的长短。
2.难点:如何引导学生独立思考,发现线段长度的测量和比较方法。
五. 教学方法1.情境教学法:通过实例和练习,让学生在实际操作中掌握线段长度的测量和比较方法。
2.引导发现法:教师引导学生发现问题,激发学生的思考,培养学生独立解决问题的能力。
3.合作学习法:学生分组讨论和实践,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具:尺子、直尺、线段模型、黑板、多媒体设备。
2.学具:每人一套尺子、直尺、线段模型。
七. 教学过程1.导入(5分钟)教师通过展示线段模型,引导学生回顾线段的概念。
然后提问:“你们知道如何测量线段的长度吗?又如何比较线段的长短呢?”激发学生的思考,引出本节课的主题。
2.呈现(10分钟)教师通过多媒体展示几种不同的线段长度,让学生直观地感受线段的长短。
初一数学线段的长短比较学案
【】教案是教师对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书,都要经过周密考虑,精心设计而确定下来,表达着很强的计划性。
在此小编为您整理了初一数学线段的长短比较学案,希望能给教师教学提供参考。
学习目标:1、线段中点的概念; 2、用刻度尺画线段中点
3、会进行线段的和差倍分计算
4、线段的性质,理解两点间距离概念
探究活动一:线段中点的概念用刻度尺画线段中点
准备一根较窄的纸条(线段),折一折,你能把纸条分成相等的2条
吗?是_____把纸条长度平分的,在数学上这个折痕叫做________ 1、如图,_______把_________分成
___________________________,
________叫做___________的中点。
2、记法:∵点___是线段______的中点
(或者 )
探究活动二:会进行线段的和差倍分计算:例3
如图,点P是线段AB的中点,点C、D把线段AB三等分,
CP=1.5,求线段AB的长。
分析:①线段_____,要求线段_____。
②找一找既与AB有关,又与CP有关的线段有哪些?
解:____________________________________________________ ____________________________________________________
探究活动三:线段的性质,理解两点间距离概念
仔细阅读P160,图717,图718讲一讲你的生活中类似例子
____________________________________________________
____________________________________________________
线段的性质:_________________________________________
简单的说:________________________________
什么叫做两点间距离:________________________________
学案检测:课内练习1、自己画图,写出AC、BC的长
课内练习2、画图,求AC的长
小组内诊断:作业题2(1)AB=___BC,BC=___AD,(2)BD=___AD
作业题3 ,。
点D为线段BC中点
(1)求CD;(2)假设AD=3,求AB
作业题5、点P为线段AB上点,AP:PB=2:3。
假设AP=4,求PB,AB
自己画图]
作业题6(1)________________________________(在书上量一量)
(2) 自己画图,井打在哪儿?
理由是:________________
________________________
1、AB两点间的距离是指( )
A过A、B两点的直线 BA、B两点间的线段
CA、B两点间的线段的长 D以上都不对
2、如果点A是线段BC的中点,以下不成立的是( )
A AB=BC
B AB=A
C C BC=2AC
D BC=2AB
3、点C在线段AB上,①AC=BC;② ;③AB=AC;
④AB=2AC;⑤ ,能表示C是AB中点的有( )
A2个 B3个 C4个 D5个
3、设a,b,c表示三条线段,且a:b:c=2:3:7,a+b+c=60,那么
a=_____
4、如图,点C、D是线段AB 上的点,且AC:CD:DB=2:3:4,且AD=10,求线段BC=__________,AB=_________
5探索题①如图点C在线段AB上,且AC=4,BC=6,点M、N分别是AC,BC中点,求线段MN=____________
②其他条件不变,把AC=5,BC=5,求线段MN=___
③其它条件不变,AC+BC=10,求线段MN=____
④对于上面3个问题,我们可不可以总结为线段AB=a,点C是线段AB上任意一个点,M、N分别是AC、BC的中点,求MN的长度,结果有变化吗?MN=_______。