2019-2020学年七年级数学上册 4.2 直线、射线、线段 第2课时 比较线段的长短学案 (新版)新人教版.doc
- 格式:doc
- 大小:173.50 KB
- 文档页数:6
第四章几何图形的初步4.2直线、射线、线段(直线、射线、线段的表示)精选练习答案一. 选择题(共10小题)1.(2018·广信区第七中学初一期末)下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m【答案】A【详解】A选项,直线A、B相交于点M符合直线和点的表示,符合题意,B选项,过A、B、C三点画直线l,由于三点不确定在同一条直线上在,因此表述不正确,不符合题意,C选项,直线、相交于点M ,直线表示不正确,因此不符合题意,D选项,直线a、b相交于点m,因为点用大写字母表示,因此表述不正确,故选A.2.(2018·西藏达孜县中学初一期末)下列说法正确的是( )A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短【答案】B【详解】A、过一点P可以作无数条直线;故错误.B、直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故正确.C、射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故错误.D、射线和直线不能进行长短的比较;故错误.故选:B.3.(2018·河北省保定市第十七中学初一期末)下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.4【答案】A【详解】①两条端点重合的射线组成的图形叫做角,故①错误;②反向延长线段AB,得到射线BA,故②正确;③延长线段AB到点C,使BC=AB,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误;⑤连接两点间的线段的长叫做两点间的距离,故⑤说法错误;⑥两点之间线段最短,故⑥错误.故正确的有②故选A.4.(2018·广东省东城春晖学校初一期末)下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C【答案】C【详解】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OC到点C,错误.故选:C.5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.【答案】A【分析】由定义知,直线是向两方无限延伸的,射线是向一个方向无限延伸的,所以直线、射线只要不经过线段,就不会和线段相交;射线方向只要朝着直线所在位置,或者直线朝着射线所在位置,两者就一定相交;如果直线在射线延伸的反方向,则两者不相交.【详解】A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.6.(2018·广东大光勘九年一贯制学校初一期末)直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【答案】D【详解】解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.7.(2019·宿州市第十一中学初一期末)下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短【答案】B【详解】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n-3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点的所有连线中,线段最短,故错误.故选:B.8.(2018·广东省东城春晖学校初一期末)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【答案】C【详解】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.9.(2018·河南郑东新区九年制实验学校初一期中)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段【答案】B【详解】解:A、因为直线向两方无限延伸;所以直线AB与直线BA是同一条直线,说法A正确,故本选项不符合题意;B、射线OA与射线AB端点不同,不是同一条射线,说法B错误,故本选项符合题意;C、射线OA与射线OB的端点和方向都相同;是同一条射线,故说法C正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,故说法D正确,故本选项不符合题意;故选:B.10.(2018·惠州市实验中学初一期末)下列说法中正确的是()A.三条直线两两相交有三个交点B.直线A与直线B相交于点MC.画一条5厘米长的线段D.在线段、射线、直线中直线最长【答案】C【详解】A.三条直线两两相交有三个或一个交点,故A选项错误;B.直线a与直线b相交于点M,直线可以用一个小写字母表示,不能用一个大写字母表示,故B选项错误;C.画一条5厘米长的线段,线段的长度可度量,故C选项正确;D.在线段、射线、直线中,直线和射线的长度无法度量,而线段的长度可度量,故D选项错误;故选:C.二. 填空题(共5小题)11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.【答案】3【详解】如图,有3条.12.(2018·安达市吉星岗镇吉星岗中学初一期末)如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.【答案】30【解析】线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.故答案为:30.13.(2018·南宁市期末)如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票.【答案】12【详解】如图所示:其中每两个站之间有AC、AD、AB、CD、CB、DB,故应该安排6×2=12(种).14.(2018·邢台市第七中学初一期中)如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。
4.2 直线、射线、线段(第二课时)课型新授单位主备人教学目标:1.知识与技能:(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)会画线段的和与差2.过程与方法:(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感、价值观:积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重点、难点:教学重点:比较两条线段的长短,画一条线段等于已知线段,会画线段的和与差教学难点:根据语言描述画出图形,理解画图语言,建立图形与语言之间的联系.教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?讨论后派一位代表上来说说你们的想法。
二、自主学习、合作探究探究(一)、如何比较两条线段的大小?学生活动设计:学生思考比较方法,可能有两种方法,一是分别用刻度尺量出线段的长度,比较长度即可(度量法),二是把其中的一条线段移到另一条线段上进行比较(叠合法).(课件:比较两条线段的大小)生讨论1、如上图,直接看出,总结第一种方法:目测法2、用刻度尺量,再比较数量大小------度量法,即用一把尺量出两条线段的长度,再进行比较。
3、利用圆规,把其中一条线段移到另一条线段上作比较------叠合法先把两条线段的一端重合,另一端落在同侧,根据另一端落下的位置,来比较总结比较线段长短的方法:1目测法 2 度量法 3 叠合法小试牛刀:观察下列三组图形,分别比较线段a、b的长短,再用刻度尺量一下,看看你的观察结果是否正确(1))(2)两条线段的关系有: AB=CD AB>CD AB<CD归纳总结:度量法数线段比较的方法叠合法形跟踪练习:教材128页1题探究(二):你能用直尺(没有刻度)和圆规画一条线段等于已知线段吗?已知线段a,作线段AB,使线段AB=a.学生活动设计:由于直尺没有刻度,因此直尺的作用是画线,不能进行度量,而圆规当半径不变时,可以把一条线段任意移动,因此圆规的作用是度量,于是有下列画法:(1)画射线AC(2)以点A为圆心,a的长为半径画弧,交射线AC于点B,线段AB就是符合条件的线段.aA B C所以 AB=a像这样仅用圆规和没有刻度的直尺作图的方法叫尺规作图.教师活动设计:在学生总结画法时,注意语言的简洁与规范,及时纠正学生的不规范的说法和表述.注意:不要求写画法,但一定要标清字母,写出有结论.也可以先量出线段a的长度,再画一条等于这个长度的线段例1 如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.a A B C作业设计1、如图,已知A、B、C三点在同一条直线上,则(1)AB+BC=(2)AC-BC=(3)AC-AB=2、已知线段AB=5cm,(1)在线段AB上画线段BC=3 cm,并求线段AC的长(2)在直线AB上画线段BC=3 cm,并求线段AC的长3、如下图,四条线段AB、BC、CD、DA,且,用圆规比较图中的线段大小,确定出A、B、C、D四点的准确位置,再用刻度尺量出这四条线段的长度.最佳解决方案个课下学生独立完成教学设计反思:本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心。
4.2 直线、射线、线段知己知彼,百战不殆。
《孙子兵法·谋攻》原创不容易,【关注】,不迷路!第1课时直线、射线、线段一、基本目标【知识与技能】1.了解直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解“两点确定一条直线”的性质,并能初步应用.3.能根据语句画出相应的图形,会用语句描述简单的图形,在图形的基础上发展数学语言.【过程与方法】1.初步体验图形是有效描述现实世界的重要手段.2.初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【情感态度与价值观】培养学生热爱数学、勤于思考的品质.二、重难点目标【教学重点】1.了解直线、射线、线段的联系与区别.2.能正确表示直线、射线、线段.【教学难点】能够把几何图形与语言表示、符号书写很好地联系起来.环节1 自学提纲,生成问题【5 min阅读】阅读教材P125~P126的内容,完成下面练习.【3 min反馈】1.经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.2.如图,当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点.3.射线可以看做由线段向一方延伸形成的,直线可以看做由线段向两方延伸形成的.4.判断下列说法是否正确.(1)直线比射线长.( )(2)直线AB大于直线CD.( )(3)方向相反的两条射线是一条直线.( )(4)延长直线AB( )(5)直线AB与直线BA不是同一条直线( )(6)直线AB上有A点( )(7)直线AB与直线l不可能是同一条直线( )环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图所示,A、B、C、D四个选项中各有一条射线和一条线段,它们能相交的是( )【互动探索】(引发学生思考)线段是不延伸的,而射线只向一个方向延伸.【答案】C【互动总结】(学生总结,老师点评)本题主要查了线段、射线的延伸性,特别要注意射线是向一个方向无限延伸的,我们作图时只是作出了其中的一部分.【例2】如图所示,图中共有几条线段?【互动探索】(引发学生思考)如何数才能做到不重不漏?可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n×n-12进行计算.【解答】(方法一)图中线段有:AB、AC、AD、AE;BC、BD、BE;CD、CE;DE;共4+3+2+1=10(条).(方法)共有A、B、C、D、E五个端点,则线段的条数为5×5-12=10(条).【互动总结】(学生总结,老师点评)找线段时要按照一定的顺序,做到不重不漏,如果记住公式会更加简便准确.活动2 巩固练习(学生独学)1.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是( B )A.射线BA B.射线AC C.射线BC D.射线CB 2.如图,下列语句表述错误的是( C )A.点A在直线m上B.直线l经过点AC.点B在直线l上D.直线m不经过B点3.观察下列图形,并阅读图形下面的相关文字:两条直线相交,最多有一个交点三条直线相交,最多有三个交点四条直相交,最多有六个交点猜想:(1)5条直线相交最多有10个交点;(2)6条直线相交最多有15个交点;(3)n条直线相交最多有n×()n-12个交点.活动3 拓展延伸(学生对学)【例3】由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,么要为这次列车制作的火车票有( )A.6种B.12种C.21种D.42种【互动探索】从郑州出发要经过6个车站,所以要制作6种车票,从开封出发要经过5个车站,所以要制作5种车票,从商丘出发要经过4个车站,所以要制作4种车票,从菏泽出发要经过3个车站,所以要制作3种车票,从聊城出发要经过2个车站,所以要制作2种车票,从任丘出发要经过1个车站,所以要制作1种车票,再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.【答案】D【互动总结】(学生总结,老师点评)可以结合线段条数的确定方法,也可以用公式n(n-1),将n=7代入即可.环节3 课堂小结,当堂达标(学生总结,老师点评)1.线段、射线、直线的表示:(1)线段:两端点,有长度.(2)射线:一端点,无长度.(3)直线:无端点,无长度.2.直线的性质:(1)两点确定一条直线.(2)两条直线相交只有一个交点.请完成本课时对应练习!第2课时比较线段的长短一、基本目标【知识与技能】1.理解线段中点的含义,会比较线段的长短.2.掌握“两点之间线段最短”的性质,知道两点间的距离的含义.【过程与方法】通过现实情境的引入及圆规作图,理解线段有长短,且能掌握比较线段长短的方法.【情感态度与价值观】1.利用丰富的活动情境,体验线段的比较方法,并能初步应用.2.让学生体验到两点之间线段最短的性质,感受数学与生活的联系.二、重难点目标【教学重点】线段的大小比较.【教学难点】线段中点的应用及两点之间的距离.环节1 自学提纲,生成问题【5 min阅读】阅读教材P126~P129的内容,完成下面练习.【3 min反馈】1.比较两条线段的长短的方法有度量法和叠合法.2.把一条线段分成相等的两条线段的点叫做线段的中点.3.连接两点间的线段的长度叫做两点的距离,线段的基本性质:两点之间,线段最短.4.如图,点C是线段AB的中点,AC=8 cm,则BC=8 cm,AB=16 cm.5.线段AB=6 cm,延长线段AB到C,使BC=3 cm,则AC是BC的3倍.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2 cm,AC比BC长多少?【互动探索】(引发学生思考)根据线段中点的性质及已知条件,找到线段间的数量关系,从而解决问题.【解答】因为点M是AC的中点,点N是BC的中点,所以AC=2MC,BC=2NC,所以AC-BC=(MC-NC)×2=4 cm,即AC比BC长4 cm.【互动总结】(学生总结,老师点评)根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【例2】如图,B、C两点把线段AD分成2∶3∶4的三部分,点E是线段AD 的中点,EC=2,求:(1)AD的长;(2)AB∶BE.【互动探索】(引发学生思考)(1)根据线段的比及中点的性质,可设出未知数,列出方程,解方程可得AD的长度;(2)要求比值,先求两条线段的长.【解答】(1)设AB=2x,则BC=3x,CD=4x,AD=AB+BC+CD=9x.由E为AD的中点,得ED=12AD=92x,所以CE=DE-CD=92x-4x=x2=2.解得x=4,所以AD=9x=36.(2)由AB=2x=8,BC=3x=12,则BE=BC-CE=12-2=10.所以AB∶BE=8∶10=4∶5.【互动总结】(学生总结,老师点评)在遇到线段之间比的问题时,往往设出未知数,列方程解答.活动2 巩固练习(学生独学)1.如图所示,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为( A )A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短2.如图,点C为AB的中点,点D是BC的中点,则下列说法错误的是( C ) A.CD=AC-BDB.CD=12AB-BDC.CD=2 3 BCD.AD=BC+CD3.如图,B,C是线段AD上的两点,若AD=18 cm,BC=5 cm,且M,N分别为AB,CD的中点.求AB+CD的长度.解:因为AB+CD=AD-BC,AD=18 cm,BC=5 cm,所以AB+CD=18 cm-5 cm=13 cm.活动3 拓展延伸(学生对学)【例3】如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )A.5 B.2.5C.5或2.5 D.5或1【互动探索】本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB-BC.又AB=6,BC=4,所以AC =6-4=2.因为D是AC的中点,所以AD=1.(2)当点C在线段AB的延长线上时,如图,AC=AB+BC.又AB=6,BC=4,所以AC=6+4=10.因为D是AC的中点,所以AD=5.【答案】D【互动总结】(学生总结,老师点评)解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.环节3 课堂小结,当堂达标(学生总结,老师点评)1.线段的比较与性质(1)比较线段:度量法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.请完成本课时对应练习!【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,就能向成功迈进。
2019-2020学年七年级数学上册 4.2 直线、射线、线段第2课时比较线
段的长短学案 (新版)新人教版
课前预习
要点感知1限定用____________和________作图,叫做尺规作图.
要点感知2比较两条线段的长短,我们可用________分别测量出线段的长度来比较大小,或把其中的一条线段移到____________做比较.
要点感知3类似于数,线段也可以________.
预习练习3-1如图,已知点C、D是线段AB上两点,则AB-AC=________,CD+DB=________.
要点感知4线段上的一点将线段分成相等的两条线段,这一点叫做线段的________.
预习练习4-1已知点C是线段AB的中点,AB=2,则BC=________.
当堂训练
知识点1 用尺规作线段
1.作图:已知线段a、b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)
知识点2 线段长短的比较
2.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )
A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳
B.把两条绳子接在一起
C .把两条绳子重合,观察另一端情况
D .没有办法挑选
3.如图,若AB =CD ,则AC 与BD 的大小关系是( )
A .AC>BD
B .AC<BD
C .AC =B
D D .不能确定
4.(佛山中考)如图,线段的长度大约是________厘米(精确到0.1厘米).
知识点3 线段的中点及和、差、倍、分 5.如图,下列关系式中与图形不符合的是( )
A .AD -CD =AC
B .A
C +C
D =BD C .AC -BC =AB D .AB +BD =AD
6.在直线m 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,则线段OB 的长度为( )
A .0.5 cm
B .1 cm
C .1.5 cm
D .2 cm
7.如图,C 为AB 的中点,D 是BC 的中点,则下列说法错误的是( )
A .CD =AC -BD
B .CD =1
2AB -BD
C .C
D =2
3BC D .AD =BC +CD
8.如图,线段AC =12,BC =4,求AB 的长.
9.如图,点C是线段AB上的点,点D是线段BC的中点.
(1)若AB=10,AC=6,求CD的长;
(2)若AC=30,DB=10,求AB的长.
课后作业
10.(梧州期末)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC 的长是( )
A.2 cm B.3 cm
C.4 cm D.6 cm
11.线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC的长为( ) A.4 cm B.5 cm
C.6 cm D.2 cm
12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1,若BC=2,则AC等于( ) A.3 B.2
C.3或5 D.2或6
13.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE________DE.(填“>”“<”或“=”)
14.已知线段AB=15 cm,反向延长线段AB到C,使AC=7 cm,若M、N分别是线段AB、AC的中点,则MN=________cm.
15.如图,已知线段a、b、c,用圆规和直尺画线段,使它等于2a+b-c.
16.如图,M是线段AB的中点,点C在线段AB上,且AC=4 cm,N是AC的中点,MN=3 cm,求线段CM和AB的长.
挑战自我
17.线段AB 上有两点P 、Q ,点P 将AB 分成两部分,AP ∶PB =2∶3;点Q 将AB 也分成两部分,AQ ∶QB =4∶1,且PQ =3 cm.求AP 、QB 的长.
参考答案
课前预习
要点感知1 无刻度的直尺 圆规 要点感知2 刻度尺 另一条线段上 要点感知3 加减 预习练习3-1 CB CB 要点感知4 中点 预习练习4-11 当堂训练
1.略
2.A
3.C
4.2.3(或2.4)
5.B
6.A
7.C
8.因为AB =AC -BC ,AC =12,BC =4,所以AB =12-4=8.
9.(1)因为点D 是线段BC 的中点,所以CD =1
2BC.因为AB =10,AC =6,所以BC =AB -AC =10-6=4.
所以CD =1
2BC =2. (2)因为点D 是线段BC 的中点,所以BC =2BD.因为BD =10,所以BC =2×10=
20.因为AB =AC +BC ,AC =30,所以AB =30+20=50. 课后作业
10.A 11.C 12.D 13.= 14.11
15.(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ;(3)在线段AD 上截取DE =c.所以线段AE 即为所求.
16.因为N 是AC 中点,AC =4 cm ,所以AN =NC =12AC =1
2×4=2(cm).因为MN =3 cm ,所以AM =AN
+MN =2+3=5(cm).因为M 是AB 的中点,所以AB =2AM =2×5=10(cm). 挑战自我 17.画出图形.
设AP =2x cm ,PB =3x cm ,则AB =5x c m.因为AQ∶QB=4∶1,所以AQ =4x cm ,QB =x cm.所以PQ =PB -QB =2x cm.因为PQ =3 cm ,所以2x =3.所以x =1.5.所以AP =3 cm ,Q B =1.5 cm.。