二次函数模型
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
专题01 二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二次函数的识别】 (1)【考点二二次函数中各项的系数】 (2)【考点三利用二次函数的定义求参数】 (3)【考点四已知二次函数上一点,求字母或式子的值】 (5)【考点五列二次函数的关系式】 (6)【过关检测】 (8)【典型例题】【考点一二次函数的识别】【变式训练】1.(2023·浙江·九年级假期作业)以下函数式二次函数的是()【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数221y x x =--+的二次项系数是( )A .1B .1-C .2D .2-【答案】B【分析】根据二次函数的定义“一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ¹)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数221y x x =--+的二次项系数是1-.故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2023·浙江·九年级假期作业)二次函数()32-=x x y 的二次项系数与一次项系数的和为( )A .2B .2-C .1-D .4-【答案】D 【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:()23622x y x x x --==,∴二次项系数是2,一次项系数是6-,∴264-=-,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键.2.(2022·全国·九年级假期作业)二次函数2(1)y x x =-的二次项系数是________.【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义,一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数()2231y m x mx =+++是二次函数,则( )A .2m ³-B .2m ¹C .2m ¹-D .2m =-【答案】C 【分析】根据二次函数的定义,即可求解.【详解】解:根据题意得20m +¹,解得2m ¹-,故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(a ,b ,c 是常数,0a ¹)的函数,叫做二次函数是解题的关键.【变式训练】【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数2y ax bx c =++的定义条件是:a 、b 、c 为常数,0a ¹,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线223y ax x =-+经过点(1,2)P ,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将(1,2)P 代入223y ax x =-+中,得:22=121+3a -´´,解得:=1a ,故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键.【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线23y ax bx =+-过点(2,4),则代数式84a b +的值为( )A .14B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax 2+bx -3关系式,再整体扩大2倍,即可求出代数式的值.【详解】解:将点(2,4)代入抛物线y=ax 2+bx -3得4a +2b -3=4,整理得8a +4b =14.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .20【答案】B【分析】先把点()2,3-代入解析式,得到2=7c b -,然后化简247=2c b --(c-4b )-7,整体代入即可得到答案.【详解】解:把点()2,3-代入2y x bx c =-++,得:2=7c b -,∵247=2c b --(c-2b )-7277=7=´-;故选择:B .【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】【变式训练】1.(2022秋·九年级单元测试)一台机器原价为50万元,如果每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式为_____.【答案】()2501y x =-【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为50万元,每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,∴y 与x 之间的函数关系式为()2501y x =-.故答案为:()2501y x =-.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格=原价()21x ´-.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当60x =时,8050y x ==;时,100y =.在销售过程中,每天还要支付其它费用450元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利润w (元)与销售单价x (元)之间的函数关系式.【答案】(1)2200y x =-+(3070x ££);(2)222606450w x x =-+-(3070x ££)【分析】(1)根据y 与x 写成一次函数解析式,设为y kx b =+,把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价´销售量列出w 关于x 的二次函数解析式即可.【详解】(1)设y 与x 的函数关系式为y kx b =+.60x =Q 时,80y =,50x =时,100y =,608050100k b k b +=ì\í+=î,解得2200k b =-ìí=î,2200y x \=-+,根据部门规定,得3070x ££.(2)22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数2=23y x x --中,当=1x -时,y 的值是________.【答案】0【分析】把=1x -代入2=23y x x --计算即可.【详解】解:当=1x -时,2=23=123=0y x x ---+,故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把=1x -代入2=23y x x --计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】23x - -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数||1(1)45m y m x x +=++-是关于x 的二次函数,则一次函;【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得()()2302050600y x x x x =++=++,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题。
专题01 二次函数的定义压轴题五种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项考点三 根据二次函数的定义求参数 考点四 已知二次函数一点求代数式的值考点五 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x=D .323y x x =+-【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个.A .2B .3C .4D .52.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( )A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =32.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.2.(2021·广东广州·九年级期中)关于x 的函数()21mmy m x -=+是二次函数,则m 的值为__________.考点四 已知二次函数一点求代数式的值例题:(2022·全国·九年级)若点(m ,0)在二次函数y =x 2﹣3x +2的图象上,则2m 2﹣6m +2029的值为 ____.【变式训练】1.(2022·全国·九年级课时练习)已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.2.(2022·全国·九年级课时练习)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________考点五 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.2.(2022·全国·九年级课时练习)如图,正方形ABCD 的边长是10cm ,E 是AB 上一点,F 是AD 延长线上的一点,BE DF =.四边形AEGF 是矩形,矩形AEGF 的面积()2cm y 与BE 的长cm x ()010x <£的函数关系是______.一、选择题1.(2021·湖南湘西·九年级期中)下列函数解析式中,一定为二次函数的是( )A .y =3x +1B .y =ax 2+bx +cC .s =2t 2﹣2t ﹣1D .y =x 2+1x2.(2020·浙江杭州·九年级阶段练习)二次函数y =x (1﹣x )﹣2的一次项系数是( )A .1B .﹣1C .2D .﹣23.(2021·安徽·休宁县洪里初级中学九年级期中)若y =(m -2)22m x -+5x -3是二次函数,则常数m 的值为( ).A .-2B .2C .±2D .不能确定4.(2022·全国·九年级课时练习)已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .05.(2022·全国·九年级课时练习)在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x =+B .24y x =-C .24y x =-D .42y x=-6.(2022·全国·九年级课时练习)已知函数:①y =2x ﹣1;②y =﹣2x 2﹣1;③y =3x 3﹣2x 2;④y =2(x +3)2-2x 2;⑤y =ax 2+bx +c ,其中二次函数的个数为( )A .1B .2C .3D .4二、填空题7.(2021·全国·九年级专题练习)二次函数2231y x x =--的二次项系数与常数项的和是__________.8.(2021·全国·九年级课时练习)把y =(3x -2)(x +3)化成一般形式后,一次项系数与常数项的和为________.9.(2019·陕西·西安高新一中实验中学九年级期末)若函数27(3)1m y m x x -=--+是二次函数,则m 的值为_________.10.(2021·四川·广汉市教学研究教师培训中心九年级期中)若函数y =(m -2)x |m |+2x +1是关于x 的二次函数,则m 的值为________.11.(2021·上海市罗星中学九年级期中)一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 关于x 的函数解析式为____.12.(2021·全国·九年级课时练习)观察:①26y x =;②235y x =-+;③2200400200y x x =++;④22y x x =-;⑤21132y x x =-+;⑥()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)三、解答题13.(2021·内蒙古·奈曼旗新镇中学九年级阶段练习)已知函数()273m y m x -=+.(1)当m 为何值时,此函数是正比例函数?(2)当m 为何值时,此函数是二次函数?14.(2021·江苏·九年级专题练习)已知y 关于 x 的函数y =(m 2+2m )x 2+mx +m +1.(1)当m 为何值时,此函数是一次函数? (2)当m 为何值时,此函数是二次函数?15.(2021·全国·九年级专题练习)已知函数()()2211y m m x m x m =-+-++.(1)当m 为何值时,这个函数是关于x 的一次函数;(2)当m 为何值时,这个函数是关于x 的二次函数.16.(2022·重庆市巴川中学校八年级期中)如图,在Rt △ABC 中,∠B =90°,AC =30cm ,∠A =60°,动点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时动点E 从点A 出发沿AB 方向以2cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts ,过点D 作DF ⊥BC 于点F ,连接EF .(1)若四边形AEFD为菱形,则t值为多少?(2)在点D、E的运动过程中,设四边形ADFE的面积为y,请求出y与t的函数关系式?。
二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。
二次函数弓形模型二次函数是一种常见的数学模型,它的图像形状可以是一条抛物线,也可以是一个弓形。
二次函数的一般形式是y=ax^2+bx+c,其中a、b、c 是常数,且a不等于0。
本文将探讨二次函数弓形模型的特点、应用以及解析方法。
首先,我们来讨论二次函数弓形模型的特点。
当a大于0时,二次函数的图像开口朝上,形状为一个弓形。
当a小于0时,二次函数的图像开口朝下,形状也是一个弓形。
无论开口朝上还是朝下,二次函数的图像都具有对称轴,对称轴的方程为x=-b/2a。
对称轴将图像分为两个对称的部分,称为左半部分和右半部分。
弓形模型的顶点是二次函数图像的最低点(当a大于0时)或最高点(当a小于0时),顶点的坐标为(-b/2a,f(-b/2a))。
其次,我们来探讨二次函数弓形模型的应用。
弓形模型常用于描述一些现实生活中的问题,例如抛物线的轨迹、物体的运动轨迹等。
在物理学中,二次函数弓形模型可以用来描述自由落体运动中物体的高度随时间的变化,以及抛体的轨迹。
在经济学中,二次函数弓形模型可以用来描述成本、收益、供求关系等。
在工程学中,二次函数弓形模型可以用来描述一些曲线的形状,例如拱桥的形状等。
最后,我们来介绍二次函数弓形模型的解析方法。
对于给定的二次函数y=ax^2+bx+c,我们可以通过以下步骤来解析该函数的图像:1.计算对称轴的坐标:对称轴的方程为x=-b/2a,计算得到对称轴的x坐标为-b/2a。
2.计算顶点的坐标:将对称轴的x坐标代入二次函数的表达式中,计算得到顶点的坐标为(-b/2a,f(-b/2a))。
3.计算y轴截距:将x=0代入二次函数的表达式中,计算得到y轴截距为c。
4.根据对称轴、顶点和y轴截距的坐标,绘制二次函数的图像。
当我们了解了二次函数弓形模型的特点、应用和解析方法后,就可以更好地理解和应用这一数学模型。
无论是在学术研究中还是在实际应用中,二次函数弓形模型都具有重要的地位和作用。
它不仅可以帮助我们理解自然界和社会现象中的规律,还可以用于解决一些实际问题,为我们的生活和工作带来便利和效益。
二次函数最值模型总结二次函数是数学中一种基本的函数形式,其形式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。
二次函数有着许多重要的特点和性质,其中一个重要的应用就是最值模型。
最值模型能够帮助我们求解二次函数的最值问题,如最大值、最小值等。
在这篇文章中,我将对二次函数最值模型进行总结,以帮助读者更好地理解和应用这一概念。
首先,我们先回顾一下二次函数的一般形式f(x) = ax^2 + bx + c。
其中a决定了二次函数的开口方向,a>0时开口向上,a<0时开口向下;b和c则决定了二次函数在坐标系中的位置。
为了简化分析,我们通常假设a>0。
在最值模型中,我们通常要求解二次函数的最大值和最小值。
最大值对应二次函数的开口向下的情况,最小值对应二次函数的开口向上的情况。
接下来,我们将分别讨论这两种情况下的最值模型。
首先,考虑开口向下的情况,即a<0。
对于这种情况,我们可以通过求导数来找到二次函数的最大值。
一般来说,设f(x) = ax^2 + bx + c,其中a<0,我们可以先求导数f'(x) = 2ax + b。
接着,我们令f'(x) = 0,解得x = -b / (2a)。
将x带入原本的函数f(x)中,我们可以找到对应的最大值。
需要注意的是,由于二次函数是一个抛物线,所以在开口向下的情况下,最大值一定存在。
这是因为当x趋向于正无穷或负无穷时,二次函数的值趋向于负无穷,而当x = -b / (2a)时,二次函数的值最大。
接下来,我们来看开口向上的情况,即a>0。
对于这种情况,我们无法直接通过求导数来找到最小值。
不过,我们可以通过另一种方法来求解,即利用二次函数的顶点。
二次函数f(x) = ax^2 + bx + c的顶点坐标可以通过公式(-b / (2a), f(-b / (2a)))求得。
那么,最小值就是最顶点的纵坐标。
常见的函数模型
1.线性函数模型:y=mx+b,用于描述两个变量之间的直线关系。
2. 二次函数模型:y = ax + bx + c,用于描述曲线关系,如开口向上或向下的抛物线。
3. 指数函数模型:y = ab^x,用于描述随着 x 增加而指数级增加或减少的关系。
4. 对数函数模型:y = logb(x),用于描述递增速度逐渐减缓的关系。
5. 正弦函数模型:y = A sin (Bx + C) + D,用于描述周期性变化的关系。
6. 余弦函数模型:y = A cos (Bx + C) + D,与正弦函数类似,用于描述周期性变化的关系。
7. 常量函数模型:y = c,用于描述恒定不变的关系。
8. 分段函数模型:将函数在不同的区间定义为不同的函数,用于描述不同条件下的关系。
9. 概率密度函数模型:用于描述随机变量的分布规律,如正态分布、泊松分布等。
10. 非线性函数模型:除了上述函数模型外,还有各种非线性函数模型,如指数增长模型、对数减少模型、S形曲线模型等。
- 1 -。
二次函数的实际模型二次函数是数学中一类重要的函数形式,其形式为y=ax^2+bx+c,其中a、b、c为常数,且a不等于零。
二次函数在实际问题中的应用非常广泛,可以描述许多自然现象和工程实践。
本文将介绍二次函数的实际模型,并讨论其在不同领域的应用。
一、二次函数的基本形式二次函数的基本形式是y=ax^2+bx+c,其中a、b、c为常数。
二次函数的图像为一个抛物线,其开口方向由a的正负决定。
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
b决定了抛物线的对称轴位置,c则是y轴截距。
二、1. 物理学中的自由落体模型自由落体是物体在无空气阻力作用下下落的运动。
根据牛顿的第二定律,物体的运动满足F=ma,其中F为物体所受的合力,m为物体的质量,a为加速度。
在自由落体运动中,物体所受的合力为重力,可以表示为F=mg,其中g为重力加速度。
假设一个物体从高度h自由落下,我们可以建立二次函数模型来描述物体的高度和时间的关系。
考虑时间t为自变量,物体的高度h为因变量,我们可以得到二次函数的实际模型为h=-gt^2+vt+h0,其中v为物体的初始速度,h0为物体的初始高度。
2. 经济学中的成本函数模型在经济学中,每个企业都需要考虑生产过程中的成本。
成本函数可以用二次函数来近似描述。
假设一个企业的固定成本为c,变动成本为q^2,其中q为企业的产量。
则企业的总成本为C=c+q^2,可以用二次函数来表示。
二次函数模型可以帮助企业分析成本与产量之间的关系,从而找到最优的生产策略。
对成本函数进行求导,可以得到边际成本函数,帮助企业制定最优产量。
3. 生物学中的生长模型生物的生长过程中,通常会存在一个生长极限。
在一定条件下,生物的生长速率与其规模呈二次函数关系。
例如,人体的身高与年龄之间的关系可以用二次函数来描述。
假设一个个体的身高h和年龄t之间存在二次函数关系,可以表示为h=at^2+bt+c。
通过研究二次函数的系数,可以得到个体的生长速率、生长极限等信息。
函数模型一二次函数模型一价格竞争[问题提出]:甲乙两个加油站位于同一条公路旁,为在公路上行驶的汽车提供同样的汽油,彼此竞争激烈。
一天,甲站推出“降价销售”吸引顾客,结果造成乙站的顾客被拉走,影响了乙站的赢利。
我们知道,利润是受销售价和销售量的影响及控制的,乙站为挽回损失,必须采取降价销售这一对策来争取顾客。
那么,乙站如何决定汽油的价格,既可以同甲站竞争,又可以获取尽可能高的利润呢?[分析]:在这场“价格战”中,我们将站在乙站的立场上为其制定价格对策,因此需要组建一个模型来描述甲站汽油价格下调后乙站销售量的变化情况,从而得到乙站的销售利润。
[引入参数]:为描述汽油价格和销售量间的关系,引入指标:1)价格战前,甲、乙两站汽油的正常销售价格为P(元/升);2)降价前乙站的销售量均为L(升);3)汽油的成本价格为W(元/升);4)降价后乙站的销售价格为x(元/升),这是变量;5)降价后甲站的销售价格为y(元/升)。
[模型假设]:影响乙站汽油销售量的因素,主要有以下几个:1)甲站汽油降价的幅度;2)乙站汽油降价的幅度;3)甲乙两站之间汽油销售价格之差(x-y)。
我们知道,随着甲站汽油降价幅度的增加,乙站汽油销售量随之减小;而随着乙站汽油降价幅度的增加,乙站汽油销售量随之增大;同时,随着两站之间汽油销售价格之差(x-y)的增加,乙站汽油销售量也随之减小。
假设1:在这场价格战中,假设汽油的正常销售价格保持不变;假设2:以上各因素对乙加油站汽油销售量的影响是线性的,比例系数分别为a,b,c(均为正常数)。
[建立模型]:由假设2,乙站的汽油销售量为L-a(P-y)+b(P-x)-c(x-y),所以,乙站的利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]。
[模型求解]:当y确定时,利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]是关于x的二次函数。
求出R(x,y)的最大值点为x*=[L+(a+c)y-P(a-b)+W(b+c)]/2(b+c)。
也就是说,当甲站把汽油的价格降到y元时,乙站把它的汽油价格定为x*时,可以使得乙站获得最高利润。
[数值分析]:令L=2000,P=4,W=3,y分别取、、。
这里参数a、b、c的数值难以给出。
因为经济学的现象是难以通过试验来实现的。
我们无法要求任何一个加油站频繁调整它的销售价格来统计不同价格下的销售量。
因此下面的a、b、c的取值只是虚拟的数值,取a=b=1000,c=4000。
当然这里参数a、b、c的数量级是可以由前面的数据估算出来,一般来说,其数量级与L的数量级一样,且a,b的值应该相同。
表1列出了甲站降价、、元时,乙站的最优销售价格。
注意到价格竞争前的利润是(4—3)2000=2000。
这表明上述模型,双方的价格下降也可能会使乙站的利润提高,但随着甲站降价幅度的增大(即y变小),甲乙双方的利润都会有较大幅度的下降。
这就是说,降价销售往往会导致“两败俱伤”。
[思考]:1)该模型中为什么三个参数a,b,c都取数量级O(1000)?2)价格差对销售量的线性影响的假设是否恰当?可以修正吗?二、有关交通的数学模型[问题背景]:温州七中高一段学生到人民路的城开天桥下的十字路口,希望通过对十字路口红绿灯开设的时间及车流辆的调查,来粗略研究一下有关交通的数学模型。
为此,先让学生分组去观察,把得到的数据取平均,得到了一组数据:东西方向绿灯即南北方向红灯的时间为49秒;南北方向绿灯即东西方向红灯的时间为39秒,所以红绿灯变换的一个周期时间为88秒。
在红绿灯变换的一个周期内,相应的车流量:东西方向平均30辆,南北方向平均24辆。
那么,这组数据说明了什么问题呢?(一)交通信号灯的管理在红绿灯变换的一个周期时间T内,从东西方向到达十字路口的车辆数为H辆,从南北方向到达十字路口的车辆数为V辆,问如何确定十字路口的某个方向红灯与绿灯开的时间更合理?[分析]:这里所谓的合理,就是从整体看,在红绿灯变换的一个周期内,车辆在此路口的滞留总时间最少。
[模型假设]:1.黄灯时间忽略不计;只考虑机动车,不考虑人流量及非机动车辆;只考虑东西、南北方向,不考虑拐弯的情况;2.车流量均匀;3.一个周期内,东西向绿灯,南北向红灯时间相等;东西向与南北向周期相同。
[建立模型]:设东西方向绿灯时间(即南北方向红灯时间)为t秒,则东西方向红灯时间(即南北方向绿灯时间)为(T-t)秒;设一个周期内车辆在此路口的滞留总时间为y秒。
根据假设,一个周期内车辆在此路口的滞留总时间y分成两部分,一部分是南北方向车辆在此路口滞留的时间y1,另一部分是东西方向车辆在此路口滞留的时间y2。
下面计算南北方向车辆在此路口滞留的时间y1。
在一个周期中,从南北方向到达路口的车辆数为V,该周期中南北方向开红灯的比率是t/T,需停车等待的车辆数是V·t/T。
这些车辆等待时间最短为0(刚停下,红灯就转换为绿灯),最长为t(到达路口时,绿灯刚转换为红灯),由假设2“车流量均匀”,可知它们的平均等待时间是t/2。
由此可知,南北方向车辆在此路口滞留的时间y1=V·t/T·t/2=V/2T·t2。
同理,东西方向车辆在此路口滞留的时间y2=H/2T·(T-t)2。
所以y=y1+y2= V/2T·t2+H/2T·(T-t)2。
[模型求解]:函数y=V/2T·t2+H/2T·(T-t)2是关于t的二次函数,容易求得,当t=TH/(H+V)时,y取得最小值。
[数值模拟]:取问题背景中调查的数据来看,即T=88,H=30,V=24,则y=24/(2×88)t2+(30/2×88)(88-t)2=(3/22)t2+(15/88)(882-176t+t2)=(3/22)t2+15×88-30t+(15/88)t2=(27/88)(t-15×88/27)2-(27/88)(152×882/272)+15×88,当t=88×30/(30+24)≈(秒)时,y min=587秒。
由此可见,我们计算所得的结果和同学们实际测到的数据是比较接近的。
这也说明此路口红灯与绿灯设置的时间比较合理。
[评注]:由上述结果可知,两个方向绿灯时间之比恰好等于两个方向车流量之比时,车辆在此路口的滞留总时间最少。
这也是比较符合实际情况的。
[思考]:上面这个模型涉及的变量只有一个(车流量),若再将停车后汽车延迟发动达到正常车速所用的时间考虑在内,又该如何求解呢?(二)交通路口的红绿灯模型在一个有红绿灯的十字路口,如果绿灯亮t秒(如t=15秒),问最多可以有多少辆汽车通过这个交叉路口?试建立数学模型予以说明。
[分析]:由于交通灯对十字路口的控制方式很复杂,特别是车辆左、右转弯的规则,不同的国家都不一样。
通过路口的车辆的多少还依赖于路面上汽车的数量以及它们行驶的速度和方向。
为此在一定的假设之下把问题简化。
[模型假设]:1)十字路口的车辆穿行秩序良好,不会发生阻塞。
2)所有车辆都是直行穿过路口,不拐弯行驶,且仅考虑马路一侧或单行线上的车辆。
3)在红灯下等待的车辆足够长,且所有的车辆长度相同,设为L米。
4)红灯下等待的每相邻两辆车之间的距离相等,设为D米。
5)前一辆车启动后,下一辆车延迟启动时间相等,设为T秒。
6)所有车辆都是从静止状态匀加速启动,且加速度相同,设为a米/秒2。
7)城市道路上行驶的汽车有最高速度的限制,设为v*米/秒。
8)汽车启动后,将匀加速到最高速度v*米/秒,然后以这个速度匀速向前行驶。
[建立模型]:用X轴表示车辆行驶的道路。
原点O表示交通灯的位置,X轴的正向是汽车行驶的方向。
以绿灯亮为起始时刻。
用S n(t)来表示第n辆车在绿灯亮了t秒后在X轴上的位置(坐标)。
那么,对于灯后的第n辆车,有三种状态:1)当0≤t<(n-1)T时,车处于静止状态,此时S n(t)=-(n-1)(L+D);2)当(n-1)T≤t<v*/a+(n-1)T时,车处于匀加速状态,此时S n(t)=-(n-1)(L+D)+a[t-(n-1)T]2/2;3)当t≥v*/a+(n-1)T时,车处于匀速状态,此时S n(t)=-(n-1)(L+D)+v*2/2a+v*[t-v*/a-(n-1)T]。
由此,车的位置构成了按时间t的分段函数。
[模型求解]:当已知t时,由S n(t)>0,解出相应的n,就可知最多可以有多少辆汽车通过这个交叉路口。
另外,对于给定的n,也可由S n(t)>0,求出这一路口绿灯至少应该亮的时间t。
[数据模拟]:取一组模型的参数值:L=5米,D=2米,T=1秒,v*=11米/秒,a=2米/秒2,于是可得v*/a=秒。
代入得:1)当0≤t<n-1时,S n(t)=-7(n-1);2)当n-1<t≤n+时,S n(t)=-7(n-1)+[t-(n-1)]2;当t>n+时,3)S n(t)=-7(n-1)+112/4+11=。
当t=15时,将n从1开始逐个代入,求出S n(t)的值,即表2。
这说明当t=15秒时,第八辆汽车已通过这个交叉路口,而第九辆车还距交通灯米,不能通过。
从表3-3看出,由于汽车加速到最高限速v*的时间比较短(秒),因此绿灯亮了t秒与最多通过的汽车数n辆基本上呈线性关系,这一点也是比较符合实际的。