高中数学选修2-2精品教案 2.2.2反证法
- 格式:doc
- 大小:186.75 KB
- 文档页数:5
2.2 直接证明与间接证明2.2.2 反证法【提出问题】对于一个命题,如果直接证明比较困难,这时我们可以通过间接证明的方法来解决。
那么间接的证明方法有哪些呢?【获得新知】一般地,由证明p⇒q转向证明:¬q⇒r⇒…⇒t.t与假设矛盾,或与某个真命题矛盾.从而判定¬q为假,推出q为真的方法,叫做反证法.反证法不是直接去证明结论,而是先否定结论,再否定结论的基础上,运用演绎推理导出矛盾,从而肯定结论的真实性。
【概念领悟】①反证法证明过程中推出的“矛盾”:(1)与假设矛盾;(2)与公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾.②反证法的证明步骤:(1)分清命题的条件和结论;(2)做出与命题结论相矛盾的假设;(3)由假设出发,应用演绎推理方法,推出矛盾的结果;(4)断定产生矛盾结果的原因,在于开始做的假定不真,于是原结论成立,从而间接地证明命题为真.【经典例题】例1 设0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41 证:假设(1 - a )b >41, (1 - b )c >41, (1 - c )a >41, 则三式相乘: (1 - a )b •(1 - b )c •(1 - c )a >641 又∵0 < a , b , c < 1 ∴412)1()1(02=⎥⎦⎤⎢⎣⎡+-≤-<a a a a 同理,0<(1−b )b ≤[(1−b )+b 2]2=14 0<(1−c )c ≤[(1−c )+c 2]2=14三式相乘,得(1 - a )b •(1 - b )c •(1 - c )a ≤641 这就与前式矛盾,所以假设不成立。
所以(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41 【规律技巧】对于结论中含有“不可能”、“至多”、“至少”等词语的命题,如果直接从条件推证证明方向不明确且分类情况很复杂,这样的证明常采用反证法.。
2.2.2反证法教学建议1.教材分析本节主要内容是反证法的概念及应用反证法进行证明的一般步骤,通过学习本节内容,对培养学生的逆向思维是非常有利的,反证法是间接证明的一种基本方法.重点:了解反证法的含义及思维过程和特点,并能简单应用.难点:应用反证法解决问题.2.主要问题及教学建议(1)方法的选择.建议教师要求学生总结何时采用反证法证明更好.当问题涉及否定性,唯一性,至多,至少等字眼或问题很显然从正面无法下手时可以考虑反证法.(2)证明过程中的问题.建议教师注意展示学生的证明过程,有针对性地改正以下错误现象:不会反设或反设不全面,反设后不会应用反设(若不用反设就不是反证法了),对推出矛盾没有预见性或推不出矛盾,引导学生学会制造矛盾.备选习题1.如图,设SA,SB是圆锥SO的两条母线,O是底面圆的圆心,C是SB上一点.求证:AC与平面SOB不垂直.证明:如图,连接AB,OB,假设AC⊥平面SOB.∵直线SO在平面SOB内,∴AC⊥SO.∵SO⊥底面圆O,∴SO⊥AB.又AB∩AC=A,∴SO⊥平面ABC,∴平面ABC∥底面圆O.这显然与AB⊂底面圆O矛盾,∴假设不成立.故AC与平面SOB不垂直.2.设{a n}是公比为q的等比数列,S n是它的前n项和.(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?(1)证明:反证法:假设{S n}是等比数列,则=S1S3,即(1+q)2=a1·a1(1+q+q2).∵a1≠0,∴(1+q)2=1+q+q2,即q=0,与q≠0矛盾,∴{S n}不是等比数列.(2)解:当q=1时,{S n}是等差数列.当q≠1时,{S n}不是等差数列.假设q≠1时,{S n}是等差数列,则S1,S2,S3成等差数列,即2S2=S1+S3.∴2a1(1+q)=a1+a1(1+q+q2).由于a1≠0,∴2(1+q)=2+q+q2,q=q2.∵q≠1,∴q=0,与q≠0矛盾.∴当q≠1时,{S n}不是等差数列.第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
反证法(教学设计)【教学目标】知识与技能:1.通过实例理解反证法的概念;2.了解反证法的思考过程与特点,掌握反证法证明问题的步骤。
过程与方法:通过反证法的应用体会“正难则反”的数学思想,提升逻辑推理能力。
情感态度价值观:渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。
【教学重难点】学习重点:理解反证法的概念、反证法的特点,把握反证法的适用范围。
学习难点:如何假设问题的反面,如何在证明过程中导出矛盾。
【学法指导】通过预习教材和导学案,理解反证法的概念及反证法证明命题的思路方法,自己总结反证法证题的基本步骤,理解反证法的原理。
合作探究反证法的证明过程和一般思路,掌握反证法的特点和表述的规律及适用题型,提升自己的分析能力和数学论证能力。
【教学过程】一.情景引入(1)如果有5只鸽子飞进两只鸽笼,至少有3只鸽子在同一只鸽笼,对吗?(2)将9个球分别染成红色或白色,无论怎样染,至少有5个球是同色的,你能证明这个结论吗?分析:假设有某种染法使同色的球数都不超过4个,则球的总数不超过4+4=8,这与球的总数是9矛盾。
因此,假设不成立,无论怎样染,至少有5个球是同色的。
我们可以把这种说理方法应用到数学问题上。
(引出反证法)二.基本概念一般地,假设原命题不成立(即假设在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾。
因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法。
把这种不是直接从原命题的条件逐步推得命题成立的证明方法称为间接证明。
注:反证法是最常见的间接证明法。
反证法证题的基本步骤:①假设——假设命题的结论不成立,即假设命题结论的否定成立;②找矛盾——从假设出发,经过一系列正确的逻辑推理,推出矛盾(与已知矛盾,与定义,公理,定理,事实等矛盾,与假设矛盾,在证明过程中出现自相矛盾等),从而否定假设;③下结论——由矛盾结果,断定假设不成立,从而肯定原命题的结论成立。
简单记为:否定结论——推出矛盾——肯定结论(其中推出矛盾是反证法证明的关键)三.典型例题例1.求证:在三角形ABC中,至少有一个内角不小于60°。
反证法一、内容和内容解析:“反证法〞是人教B版数学选修2--2第二章“推理与证明〞第二节“直接证明与间接证明〞的第二课时。
“推理与证明〞是数学的根本思维过程,也是人们学习和生活中经常使用的思维方式。
证明一般包括直接证明与间接证明。
“直接证明〞的两种根本方法是综合法和分析法,它们是解决数学问题常用的思维方式;“间接证明〞的一种根本方法是反证法,但是反证法的应用需要逆向思维,这是学生学习的一个难点。
推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的根本功。
这一局部的学习是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用。
所以,本课的关键是让学生在动脑思考、动手证明的过程中体会反证法的思维过程,建立应用反证法的感觉。
二、学生学习情况分析:我所教学生是普通高中根底较差的理科班,数学思维不强,但由于本节内容在初中就有接触,反证法的逻辑结构并不复杂,相对数学的其它内容学生还是相对容易理解,但用反证法证明数学问题却是学生学习的一个难点,其原因主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和开展都是不充分的。
三、设计思想由于所教学生根底差,数学逻辑思维能力不强,所以本节课的设计先通过生活中的实例、伽利略妙用反证法、囚犯妙用反证法死里逃生等例子提高学生学习反证法的兴趣,在整个教学过程中遵循问题引领的原那么,适当运用多媒体辅助教学手段,通过提出问题,合作讨论,合情推理,归纳出反证法的概念:反证法的根本步骤:反证法的应用关键;适合用反证法证明的四类问题:将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,提高学生的数学逻辑思维能力。
四、教学目标知识与能力:通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。
过程与方法:了解反证法证题的根本步骤,会用反证法证明简单的命题。
《反证法》教学设计1.教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
2.教学重点:了解反证法的思考过程、特点3. 教学难点:反证法的思考过程、特点4.教具准备:与教材内容相关的资料。
5.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。
6.教学过程:学生探究过程:综合法与分析法归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
桌面上有3枚正面朝上的硬币,每次用双手同时翻转2枚硬币,那么无论怎么翻转,都不能使硬币全部反面朝上。
你能解释这种现象吗?假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上,都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使 3 枚硬币全部反面朝上.一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法 ( reduction to absurdity ) .例1、已知直线,a b 和平面,如果,a b αα⊄⊂,且||a b ,求证||a α。
证明:因为||a b , 所以经过直线a , b 确定一个平面β。
2.2.2反证法1.认识反法是接明的一种基本方法.2.理解反法的思虑程,会用反法明数学.基梳理1.定:一般地,由明 p? q 向明:綈 q? r ? ⋯ ? t, t 与假矛盾,或与某个真命矛盾.进而判断┐q 假,推出 q 真的方法,叫做反法.2.反法常的矛盾型:反法的关是在正确的推理下得出矛盾.个矛盾能够是与假矛盾或与数学公义、定理、公式、定或与公的事矛盾等.想想: (1) 反法的是什么?(2)反法属于直接明是接明?其明程属合情推理是演推理?(1)分析:反法的就能否认,推出矛盾,进而明原是正确的.(2)分析:反法是接明中的一种方法,其明程是特别密的演推理.自自1.用反法明命“三角形的内角中起码有一个大于60°” ,反正确的选项是(A)A .假三内角都不大于60°B.假三内角都大于60°C.假三内角至多有一个大于60°D.假三内角至多有两个大于60°分析:“起码有一个”的否认是“一个都没有”,反“三个内角都不大于60°”.2.有以下:①已知 p3+ q3= 2,求 p+ q≤2,用反法明,可假p+ q≥2;②已知a, b∈R,2|a|+ |b|<1,求方程x + ax+ b= 0 的两根的都小于1,用反法明可假方程有一根x1的大于或等于1,即假|x1|≥ 1.以下法中正确的选项是(D)A .①与②的假都B.①与②的假都正确C.①的假定正确;②的假定错误D.①的假定错误;②的假定正确分析:用反证法证明问题时,其假定是原命题的否认,故①的假定应为“的假定为“两根的绝对值不都小于1”,故①假定错误.②假定正确.3.“实数 a, b, c 不全大于0”等价于 (D)A . a, b, c 均不大于0B.a, b, c 中起码有一个大于0C.a, b, c 中至多有一个大于0p+ q>2”;②D. a, b, c 中起码有一个不大于0分析:“不全大于零”即“起码有一个不大于0”,它包含“全不大于0”.应选 D.基础巩固1. (2014 微·山一中高二期中)用反证法证明命题“假如 a>b>0,那么 a2>b2”时,假定的内容应是 (C)A . a2= b2B. a2<b222222= b 2C.a ≤ b D. a <b,且 a2.否认“至多有两个解”的说法中,正确的选项是(D)A .有一个解B.有两个解C.起码有两个解D.起码有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD 也是异面直线”的过程概括为以下三个步骤:①则A、B、C、D四点共面,因此AB、 CD共面,这与AB、 CD是异面直线矛盾;②因此假定错误,即直线AC、 BD也是异面直线;③假定直线AC、 BD是共面直线.则正确的序号次序为(B)A .①②③B .③①②C.①③② D .②③①分析:联合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若 |a- 1|+ |b- 1|= 0,则 a= b= 1”用反证法证明时应假定为________.分析:“a= b= 1”的反面是“a≠1或 b≠1”,因此设为a≠1或 b≠1.答案: a≠1或 b≠1能力提升5.以下命题不适适用反证法证明的是(C)A.同一平面内,分别与两条订交直线垂直的两条直线必订交B.两个不相等的角不是对顶角C.平行四边形的对角线相互均分D.已知 x, y∈ R,且 x+ y> 2,求证: x,y 中起码有一个大于 1.分析:选项 A 中命题条件较少,不足以正面证明;选项 B 中命题能否认性命题,能够反证法证明;选项 D 中命题是起码性命题,能够反证法证明.选项 C 不适适用反证法证明.故选 C.6.设 a、b、c∈R+,P= a+ b- c,Q= b+ c-a, R= c+ a-b,则“PQR>0”是“P、Q、R同时大于零”的 (C)A .充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件分析:第一若 P、Q、R 同时大于零,则必有PQR>0 建立.其次,若 PQR>0,且 P、Q、R 不都大于 0,则必有两个为负,不如设P<0,Q<0,即 a+b- c<0,b+ c- a<0,∴ b<0 与b∈ R+矛盾,故 P、Q、R 都大于 0.应选 C.7.已知数列 { a n} ,{ b n} 的通项公式分别为a n= an+ 2,b n= bn+ 1(a,b 是常数,且 a>b),那么这两个数列中序号与数值均对应同样的项有________个.分析:假定存在序号和数值均相等的项,即存在n 使得 a n=b n,由题意 a>b, n∈N *,则恒有 an> bn,进而 an+ 2>bn+ 1 恒建立,因此不存在n 使 a n= b n.答案: 08.有以下表达:①“ a>b”的反面是“a<b”;② “x= y”的反面是“ x>y 或 x<y”;③ “三角形的外心在三角形外”的反面是“三角形的外心在三角形内” ;④“三角形最多有一个钝角”的反面是“三角形没有钝角” .此中正确的表达有__________( 填序号 ) .分析:“x=y”的反面是“x≠y”,即是“x>y 或 x<y”,因此②正确;“a>b”的反面是“a≤b”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角” 的反面是“三角形起码有两个钝角”.因此这三个都错.答案:②9.假如非零实数 a , b ,c 两两不相等,且2=1+1不建立.2b = a + c.证明: b a c证明:假定 2=1+ 1建立,则2= a + c =2b ,∴ b 2= ac.b acb ac ac又∵ b = a + c ,∴ a + c 2 2 2 22 2=ac ,即 a + c = 2ac ,即 (a - c) = 0,∴ a = c ,这与 a ,b , c 两两不相等矛盾,∴2b =1a + 1c 不建立.x x - 2 10.已知函数f(x)= a +x + 1(a>1).(1)证明:函数 f(x)在 (- 1,+ ∞)上为增函数; (2)用反证法证明方程f(x)= 0 没有负实根.证明: (1)任取 x 1, x 2∈ (- 1,+ ∞),不如设 x 1<x 2,则 x 2- x 1>0 , ax 2- x 1>1,且 ax 1>0.因此 ax 2 -ax 1= ax 1 (ax 2- x 1- 1)>0. 又由于 x 1+1>0 , x 2+ 1>0,因此 x 2- 2- x 1- 2x 2+ 1x 1+ 1( x 2- 2)( x 1+ 1)-( x 1- 2)( x 2+ 1)=( x 1+ 1)( x 2+ 1)3( x 2- x 1)=( x 1+ 1)( x 2+ 1)>0.x 2- 2 x 1- 2于是 f(x 2)- f(x 1)=ax 2- ax 1+ x 2+ 1-x 1+1>0,故函数 f(x)在 (- 1,+ ∞)上为增函数. (2)设存在 x 0<0(x 0≠- 1)知足 f(x 0)= 0,则 ax 0=-x 0 -2x 0 .+1又 0<ax 0<1,因此 0<-x 0- 21+ 1<1,即 2<x 0<2.x 0与假定 x 0<0 矛盾,故 f(x)= 0 没有负实根.。
2.2.2 反证法一、教学目标1、知识目标:通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力.2、能力目标:了解反证法证题的基本步骤,会用反证法证明简单的命题.3、情感、态度与价值观目标:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性;渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想.在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机.二、教学重点.难点重点:1、理解反证法的概念,2、体会反证法证明命题的思路方法及反证法证题的步骤,3、用反证法证明简单的命题.难点:理解“反证法”证明得出“矛盾的所在”即矛盾依据.三、学情分析反证过程中的批判思想更有助于学生正确的认识客观世界.在教学过程中,我们要重视培养学生利用反证法对客观世界的认识提出自己的问题,这正是反证法教学所要教给学生的,应该具有的数学能力,也是培养学生数学素质与数学素养的很好教学机会.四、教学方法探析归纳,讲练结合五、教学过程教学过程:复习:综合法与分析法综合法与分析法各有其特点.从需求解题思路来看,分析法执果索因,常常根底渐近,有希望成功;综合法由因导果,往往枝节横生,不容易奏效.就表达过程而论,分析法叙述烦琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.分析归纳,抽象概括通过对这两个个问题的解答,有学生自主探究反证法的概念及反证法证明的步骤.(1)定义:反证法:一般地,假设原命题不成立,(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)步骤反证法证题的基本步骤:1.假设原命题的结论不成立;(假设)2.从这个假设出发,经过正确的推理,推出矛盾;(归缪)3.因此说明假设错误,从而证明了原命题成立.(结论)反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.知识应用,深化理解例1、写出用“反证法”证明下列命题的第一步“假设”.【设计意图】:能否正确地写出假设,是解决问题的基础和保障(1)互补的两个角不能都大于90°.(2)△ABC中,最多有一个钝角(3)c b a ,,中至少有一个是正数例2:已知三个正数a ,b , c 成等比数列,但不成等差数列, 求证:c b a ,,不成等差数列.【设计意图】:本例是否定性命题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法证明本例例3:用反证法证明关于x 的方程0)1(,0344222=+-+=+-+a x a x a ax x ,0222=-+a ax x ,当23-≤a 或1-≥a 时,至少有一个方程有实数根. 【设计意图】:本例是“至少”“至多”等存在性问题.从正面证明,需要分成多种情形讨论,而从反面证明,只要研究一种或少数几种情形.故考虑采用反证法.例4、求证:方程32=x中有且只有一个根.【设计意图】:本题是证明唯一性问题.需要证明两个方面,一是存在性;二是唯一性.当证明的结论中含“有且只有”“只有一个”“唯一存在”等形式时,由于假设结论易导出矛盾,故采用反证法证明其唯一性往往比较简单.六、当堂检测1.否定下列命题的结论:(1) 在⊿ABC 中如果AB=AC ,那么∠B=∠C. .(2) 如果点P 在⊙O 外,则d>r (d 为P 到O 的距离,r 为半径)(3) 在⊿ABC 中,至少有两个角是锐角.(4) 在⊿ABC 中,至多有只有一个直角.2.选择题:证明“在⊿ABC中至多有一个直角或钝角”,第一步应假设:()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角3.用反证法证明“三角形中至少有一个内角不小于60°”•应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律.七、课堂小结1.知识建构2.能力提高3.课堂体验八、课时练与测九、教学反思。
§2.2.2间接证明—反证法教学目标:1.结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;2.通过本节内容的学习了解间接证明反证法的思考过程、特点;3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度。
教学重点:会用反证法证明问题;了解反证法的思考过程;教学难点:根据问题的特点,选择适当的证明方法.教学过程设计(一)、情景引入,激发兴趣。
【教师引入】 三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)。
(二)、探究新知,揭示概念反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
(三)、分析归纳,抽象概括一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.(四)、知识应用,深化理解例1 已知直线a ,b 和平面αβ, ,如果,a b αα⊄⊂ ,且//a b ,求证: //a α。
例2 已知三个正数 ,,a b c ,,a b c . ,,a b c 2,a c b =即24a c ac b ++=,而2b ac =,即b ac =20a c ∴=a c =从而a b c ==,与,,a b c ,,a b c .点评:结论中含有“不”“不是”“不可能”“不存在”等词语的命题的反面比较具体,适用反证法.(2)反证法属于“间接解题的方法”书写格式易错之处是“假设”易错写成“设”例32. ( 提示:有理数可表示为/m n ) 22/m n (m ,n 为互质正整数),从而:2(/)2m n =,222m n =,可见m 是2的倍数.设m =2p (p 是正整数),则 22224n m p ==,可见n 也是2的倍数.这样,m , n 就不是互质的正整数(矛盾). 2/m n =不可能, 2.课堂练习:1、课本P91页 练习1、2(五)、归纳小结、布置作业反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)布置作业:.课本P91页 A组4婆婆守着电视机,嗑着瓜子,喝着茶水,品茗着茶香,打开电视,正好是自己喜爱的节目《宰相刘罗锅》一看就是一天,我耐心给婆婆讲解着,婆婆看的入迷,我讲解的带劲,灯光下,照着我们婆媳的身影,喁喁细语声洒落了一地的溫馨。
2.2.2 反证法教学设计1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.教学知识梳理知识点反证法王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”思考本故事中王戎运用了什么论证思想?[答案]运用了反证法思想.梳理(1)定义:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.教学案例类型一用反证法证明否定性命题例1已知a,b,c,d∈R,且ad-bc=1,求证:a2+b2+c2+d2+ab+cd≠1.证明假设a2+b2+c2+d2+ab+cd=1.因为ad-bc=1,所以a2+b2+c2+d2+ab+cd+bc-ad=0,即(a+b)2+(c+d)2+(a-d)2+(b+c)2=0.所以a+b=0,c+d=0,a-d=0,b+c=0,则a=b=c=d=0,这与已知条件ad-bc=1矛盾,故假设不成立.所以a2+b2+c2+d2+ab+cd≠1.反思与感悟(1)用反证法证明否定性命题的适用类型:结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.(2)用反证法证明数学命题的步骤跟踪训练1 已知三个正数a ,b ,c 成等比数列但不成等差数列,求证:a ,b ,c 不成等差数列.证明 假设a ,b ,c 成等差数列, 则2b =a +c , ∴4b =a +c +2ac .①∵a ,b ,c 成等比数列,∴b 2=ac ,② 由②得b =ac ,代入①式, 得a +c -2ac =(a -c )2=0, ∴a =c ,从而a =b =c .这与已知a ,b ,c 不成等差数列相矛盾, ∴假设不成立.故a ,b ,c 不成等差数列. 类型二 用反证法证明“至多、至少”类问题例2 a ,b ,c ∈(0,2),求证:(2-a )b ,(2-b )c ,(2-c )a 不能都大于1. 证明 假设(2-a )b ,(2-b )c ,(2-c )a 都大于1. 因为a ,b ,c ∈(0,2), 所以2-a >0,2-b >0,2-c >0. 所以(2-a )+b 2≥(2-a )b >1.同理(2-b )+c 2≥(2-b )c >1,(2-c )+a2≥(2-c )a >1.三式相加,得(2-a )+b 2+(2-b )+c 2+(2-c )+a2>3, 即3>3,矛盾.所以(2-a )b ,(2-b )c ,(2-c )a 不能都大于1. 反思与感悟 应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如:结论词 反设词 结论词 反设词 至少有一个 一个也没有 对所有x 成立 存在某个x 0不成立 至多有一个 至少有两个 对任意x 不成立存在某个x 0成立至少有n 个 至多有n -1个 p 或q p 且q 至多有n 个至少有n +1个p 且qp 或q跟踪训练2 已知a ,b ,c 是互不相等的实数,求证:由y 1=ax 2+2bx +c ,y 2=bx 2+2cx +a 和y 3=cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点. 证明 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点, 由y 1=ax 2+2bx +c ,y 2=bx 2+2cx +a ,y 3=cx 2+2ax +b , 得Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0, 且Δ3=4a 2-4bc ≤0.同向不等式求和,得4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0, 所以2a 2+2b 2+2c 2-2ab -2bc -2ac ≤0, 所以(a -b )2+(b -c )2+(a -c )2≤0,所以a =b =c . 这与题设a ,b ,c 互不相等矛盾, 因此假设不成立,从而命题得证. 类型三 用反证法证明唯一性命题 例3 求证:方程2x =3有且只有一个根. 证明 ∵2x =3,∴x =log 23. 这说明方程2x =3有根.下面用反证法证明方程2x =3的根是唯一的. 假设方程2x =3至少有两个根b 1,b 2(b 1≠b 2), 则12b=3, 22b=3,两式相除得122b b -=1,∴b 1-b 2=0,则b 1=b 2,这与b 1≠b 2矛盾. ∴假设不成立,从而原命题得证.反思与感悟 用反证法证明唯一性命题的一般思路:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论是以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.跟踪训练3 若函数f (x )在区间[a ,b ]上是增函数,求证:方程f (x )=0在区间[a ,b ]上至多有一个实根.证明 假设方程f (x )=0在区间[a ,b ]上至少有两个实根,设α,β为其中的两个实根.因为α≠β ,不妨设α<β,又因为函数f (x )在[a ,b ]上是增函数,所以f (α)<f (β).这与假设f (α)=0=f (β)矛盾,所以方程f (x )=0在区间[a ,b ]上至多有一个实根.达标检测1.证明“在△ABC 中至多有一个直角或钝角”,第一步应假设( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角 D .三角形中三个角都是直角或钝角 [答案]B2.已知a ,b 是异面直线,直线c 平行于直线a ,那么直线c 与b 的位置关系为( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线[答案]C[解析]假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 3.用反证法证明“在三角形中至少有一个内角不小于60°”,应先假设这个三角形中( ) A .有一个内角小于60° B .每一个内角都小于60° C .有一个内角大于60° D .每一个内角都大于60°[答案]B4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于c B .a ,b 都不垂直于c C .a ⊥b D .a 与b 相交[答案]D5.用反证法证明:关于x 的方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0,当a ≤-32或a ≥-1时,至少有一个方程有实数根.证明 假设三个方程都没有实数根,则由判别式都小于零,得⎩⎪⎨⎪⎧Δ1=16a 2+4(4a -3)<0,Δ2=(a -1)2-4a 2<0,Δ3=4a 2-4×(-2a )<0,则⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,解得-32<a <-1,与a ≤-32或a ≥-1矛盾,故原命题成立.。
2. 2.2反证法
课前预习学案
一、预习目标:
使学生了解反证法的基本原理;掌握运用反证法的一般步骤;学会用反证法证明一些典型问题.
二、预习内容:
提出问题:
问题1:桌面上有3枚正面朝上的硬币,每次用双手同时翻转2枚硬币,那么无论怎么翻转,都不能使硬币全部反面朝上。
你能解释这种现象吗?
学生尝试用直接证明的方法解释。
采用反证法证明:假设经过若干次翻转可以使硬币全部反面向上,由于每枚硬币从正面朝上变为反面朝上都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使3 枚硬币全部反面朝上.
问题2:A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。
则C必定是在撒谎,为什么?
分析:假设C没有撒谎, 则C真.那么A假且B假;由A假, 知B真. 这与B假矛盾.那么没有撒谎不成立;则C必定是在撒谎.
推进新课
在解决某些数学问题时,我们会不自觉地使用反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
一、学习目标
(1)使学生了解反证法的基本原理;
(2)掌握运用反证法的一般步骤;
(3)学会用反证法证明一些典型问题.
二、学习过程:
例1、已知直线,a b 和平面α,如果,a b αα⊄⊂,且||a b ,求证||a α。
解析:让学生理解反证法的严密性和合理性; 证明:因为||a b ,
所以经过直线a , b 确定一个平面β。
因为a α⊄,而a β⊂, 所以 α与β是两个不同的平面. 因为b α⊂,且b β⊂, 所以b αβ=I .
下面用反证法证明直线a 与平面α没有公共点.假设直线a 与平面α有公共点P ,则
P b αβ∈=I ,即点P 是直线 a 与b 的公共点,这与||a b 矛盾.所以 ||a α.
点评:用反证法的基本步骤:
第一步 分清欲证不等式所涉及到的条件和结论; 第二步 作出与所证不等式相反的假定;
第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;
第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等利 变式训练1.求证:圆的两条不全是直径的相交弦不能互相平分.
例2、求证:2不是有理数
解析:直接证明一个数是无理数比较困难,我们采用反证法.假设2不是无理数,那么它就是有理数.我们知道,任一有理数都可以写成形如m n
(,m n 互质, *,m Z n N ∈∈”的形式.下面我们看看能否由此推出矛盾.
证明:假设2不是无理数,那么它就是有理数.于是,存在互质的正整数,m n ,使得2m
n
=
,从而有2m n =, 因此,22
2m n =,
所以 m 为偶数.于是可设2m k = ( k 是正整数),从而有 2242k n =,即 222n k =
所以n 也为偶数.这与 m , n 互质矛盾!
由上述矛盾可知假设错误,从而2是无理数.
点评:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确
的一种方法。
变式训练2、已知0>>b a ,求证:n
n b a >(N n ∈且1>n )
例3、设二次函数q px x x f ++=2
)(, 求证:)3(,)2(,)1(f f f 中至少有一个不小于
2
1. 解析:直接证明)3(,)2(,)1(f f f 中至少有一个不小于
2
1
.比较困难,我们应采用反证法
证明:假设)3(,)2(,)1(f f f 都小于
2
1
,则 .2)3()2(2)1(<++f f f (1) 另一方面,由绝对值不等式的性质,有
2
)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。
点评:结论为“至少”、“至多”等时,我们应考虑用反证法解决。
变式训练3、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于1
反思总结:
1.反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成立; (2)从这个假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,从而肯定命题的结论正确
2.归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾; (3)自相矛盾。
3.应用反证法的情形: (1)直接证明困难;
(2)需分成很多类进行讨论;
(3)结论为“至少”、“至多”、“有无穷多个” 类命题; (4结论为 “唯一”类命题;
当堂检测:
1. 证明357,,不可能成等差数列.
2.设23
3
=+b a ,求证.2≤+b a
证明:假设2>+b a ,则有b a ->2,从而
.
2)1(68126,
61282
233323+-=+->+-+->b b b b a b b b a
因为22)1(62
≥+-b ,所以233>+b a ,这与题设条件23
3=+b a 矛盾,所以,
原不等式2≤+b a 成立。
课后练习与提高 一、选择题
1.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数
C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数
2.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥,(2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确
C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确
3.命题“三角形中最多只有一个内角是钝角”的结论的否定是( ) A.有两个内角是钝角 B.有三个内角是钝角 C.至少有两个内角是钝角 D.没有一个内角是钝角
二、填空题
4..三角形ABC 中,∠A ,∠B ,∠C 至少有1个大于或等于60ο
的反面为_______.
5. 已知A为平面BCD外的一点,则AB、CD是异面直线的反面为_______.
三、解答题
6.已知实数a b c d
,,,满足1
,,,中至少有
+>,求证a b c d
+=+=,1
ac bd
a b c d
一个是负数.。