重庆市杨家坪中学10-11学年高二数学下学期期中考试 文(无答案)
- 格式:doc
- 大小:331.50 KB
- 文档页数:5
重庆市九龙坡区杨家坪中学2023-2024学年八年级数学第一学期期末考试试题期期末考试试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.一种纳米材料的厚度是0.00000034m ,数据0.00000034用科学记数法表示为()A .50.3410-⨯B .63.410-⨯C .73.410-⨯D .73410⨯2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)3.学校准备从甲、乙、丙、丁四个科技创新小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如表所示:甲乙丙丁x78872s 11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A .甲B .乙C .丙D .丁4.不等式3(x ﹣1)≤5﹣x 的非负整数解有()A .1个B .2个C .3个D .4个5.下列说法正确的是()A .若ab =0,则点P (a ,b )表示原点B .点(1,﹣a 2)一定在第四象限C .已知点A (1,﹣3)与点B (1,3),则直线AB 平行y 轴D .已知点A (1,﹣3),AB ∥y 轴,且AB =4,则B 点的坐标为(1,1)6.一个等腰三角形的两边长分别为3、7,则它的周长为()A .17B .13或17C .13D .107.下列各式中,正确的是()A .22a ab b=B .22(1)211x x x --=-+C .1ab a+=b +1D .22a b a b++=a +b8.函数()02y x =+的自变量x 的取值范围是()A .13x >B .13x <C .13x <且2x ≠-D .13x ≠9.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是()A .(3,4)B .(4,3)C .(3,4)--D .(4,3)-10.下列命题是假命题的是()A .如果a ∥b ,b ∥c ,那么a ∥c ;B .锐角三角形中最大的角一定大于或等于60°;C .两条直线被第三条直线所截,内错角相等;D .三角形三个内角和等于180°.11.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,,则下列结论一定正确的个数是()①CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等;A .1个B .2个C .3个D .4个12.朱锦汶同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等的三角形组成,第(2)个图案由4个全等的三角形组成,(3)个图案由7个全等的三角形组成,(4)个图案由12个全等的三角形组成.则第(8)个图案中全等三角形的个数为()A .52B .136C .256D .264二、填空题(每题4分,共24分)13.已知a+b =2,则a 2﹣b 2+4b 的值为____.14.在函数13yx=-中,自变量x的取值范围是________.15.如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图2所示,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,直线AB即为所求,则小颖的作图依据是________.16.已知一个多边形的内角和是1620°,则这个多边形是_____边形.17.某校随机抽查了8名参加2019年成都市初中学业水平考试学生的体育成绩,得到的结果如下表:成绩(分)46484950人数(人)1124则这8名同学的体育成绩的众数为_____.18.如图,△ABC中,∠ACB=90°,AC=8,BC=6,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、ND,则图中阴影部分的面积之和等于_____.三、解答题(共78分)19.(8分)如图1,△ABC是边长为8的等边三角形,AD⊥BC下点D,DE⊥AB于点E(1)求证:AE=3EB;(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP的长;(3)在(2)的条件下,连接EF,若AD=PE+PF取最小值时,△PEF的面积是.20.(8分)如图,在ABC ∆中,AB AC =,36A ∠=,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)21.(8分)(1)解分式方程:11222xx x++=--.(2)如图,ABC 与DCB 中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =,求证:EBC ECB ∠=∠.22.(10分)如图,已知△ABC 中,AB =AC =10cm ,BC =8cm ,点D 为AB 的中点.(1)如果点P 在线段BC 上以3c m/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?23.(10分)计算:(1)54322418;(2)221227)32⨯-24.(10分)解分式方程(1)11322xx x -=---(2)2121x x x =++-25.(12分)(1)分解因式:m(x -y)-x +y (2)计算:5(1)(1)x x x +-26.如图,已知△ABC 中,AH⊥BC 于H,∠C=35°,且AB+BH=HC,求∠B 的度数.参考答案一、选择题(每题4分,共48分)1、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000034用科学记数法表示为3.4×10−1.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【解析】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.3、C【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.4、C【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.5、C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.故选C.【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键6、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:37717++=故选:A 【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.7、B【分析】22a a b b =等式成立的条件是a =0或a =b 时;因式分解法化简分式22(1)1x x --=2(1)(1)(1)x x x -+-;根据分式的基本性质化简1ab a+=b+1a .【详解】解:A.a b 与22a b在a =0或a =b 时才成立,故选项A 不正确;B.22(1)1x x --=2(1)(1)(1)x x x -+-=21x -+,故选项B 正确;C.1ab a+=b+1a ,故选项C 不正确;D.22a b a b++不能化简,故选项D 不正确;故选:B .【点睛】本题考查分式的化简,解题关键是熟练掌握分式的基本性质.8、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【详解】解:由题意可知:13020x x ->⎧⎨+≠⎩解得:13x<且2x≠-故选C.【点睛】此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.9、C【分析】明确A、B的坐标位置,即可判定坐标.【详解】以B为原点建立平面直角坐标系,则A点的坐标为(3,4);若以A点为原点建立平面直角坐标系,则B点在A点左3个单位,下4个单位处.故B点坐标为(-3,-4).故答案为C.【点睛】此题主要考查平面直角坐标系中用坐标表示位置,熟练掌握其性质,即可解题.10、C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.11、D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由可得AC=BC=4,则AE=3=DE,由勾股定理可得,①正确;1>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确;△DCE 的周长+4,△BDF 的周长,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.12、B【分析】仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.【详解】观察发现:第一个图形有1+1=2个三角形;第二个图形有2+2=4个三角形;第三个图形有3+22=7个三角形;…第n 个图形有n +2n -1个三角形;当n =8时,n +2n -1=8+27=1.故选:B .【点睛】本题考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(每题4分,共24分)13、4【解析】试题分析:因为2a b +=,所以224()()42()42242()4a b b a b a b b a b b a b b a b -+=+-+=-+=-+=+=.考点:1.因式分解;2.求代数式的值.14、x≠1【分析】根据分式有意义的条件,即可求解.【详解】∵在函数13yx=-中,x-1≠0,∴x≠1.故答案是:x≠1.【点睛】本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.15、内错角相等,两直线平行【分析】首先对图形进行标注,从而可得到∠2=∠2,然后依据平行线的判定定理进行判断即可.【详解】解:如图所示:由平移的性质可知:∠2=∠2.又∵∠2=∠2,∴∠2=∠2.∴EF∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定、平移的性质、尺规作图,依据作图过程发现∠2=∠2是解题的关键.16、十一【详解】设所求多边形的边数是n,则(n-2)•180°=1620°,解得n=1.故答案为:十一17、1【分析】结合表格根据众数的概念求解即可.【详解】10名学生的体育成绩中1分出现的次数最多,众数为1;故答案为:1.【点睛】本题考查了众数的知识,掌握知识点的概念是解答本题的关键.18、1【分析】如图将△FAE绕点A顺时针旋转90°得到△KAB.首先证明S△ABK=S△ABC=S△AFE,同理可证S△BDN=S△ABC,推出S△AEF+S△BDN=2•S△ABC,由此即可解决问题.【详解】如图将△FAE绕点A顺时针旋转90°得到△KAB.∵∠FAC=∠EAB=90°,∴∠FAE+∠CAB=180°,∵∠FAE=∠KAB,∴∠KAB+∠CAB=180°,∴C、A、K共线,∵AF=AK=AC,∴S△ABK=S△ABC=S△AFE,同理可证S△BDN=S△ABC,∴S△AEF+S△BDN=2•S△ABC=2×12×6×8=1,故答案为:1.【点睛】本题考查的是勾股定理、正方形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题(共78分)19、(1)见解析;(1)PE+PF的最小值=6,BP=1;(3)【分析】(1)解直角三角形求出BE,AE即可判断.(1)如图1中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.证明∠HEF=90°,解直角三角形求出EH即可解决问题.(3)证明△PBE是等边三角形,求出PE,EF即可解决问题.【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=BC=AC=8,∠B=∠BAC=60°∵AD⊥BC,∴BD=DC=4,∵DE⊥AB,∴∠DEB=90°,∠BDE=30°,∴BE=12BD=1,∴AE=AB﹣BE=8﹣1=6,∴AE=3BE.(1)解:如图1中,延长DF到H,使得DH=DF,连接EF,连接EH交BC于点P,此时PE+PF的值最小.∵∠AED=90°,AF=FD,∴EF=AF=DF,∵DF=DH,∴DE=DF=DH,∴∠FEH=90°,∵在Rt△ABD中,∠ADB=90°,BD=4,∠B=60°,∴AD=BD•tan60°=43,∵∠BAD=12∠BAC=30°,FE=FA,∴∠FEA=∠FAE=30°,∴∠EFH=60°,∠H=30°,∵FH =AD =∴EH =FH •cos30°=6,∴PE +PF 的最小值=PE +PH =EH =6,∵PD =DH •sin30°=1,∴BP =BD ﹣PD =1.(3)解:如图1中,∵BE =BP =1,∠B =60°,∴△BPE 是等边三角形,∴PE =1,∵∠PEF =90°,EF =AF =DF =∴S △PEF =12•PE •EF =12×1×.【点睛】本题考查了等边三角形的性质、勾股定理、轴对称的知识以及解直角三角形,熟悉相关性质是解题的关键.20、(1)详见解析;(2)a+b【分析】(1)首先由等腰三角形ABC 得出∠B ,然后由线段垂直平分线的性质得出∠CDB ,即可判定;(2)由等腰三角形BCD ,得出AB ,然后即可得出其周长.【详解】(1)∵AB AC =,36A ∠=∴180722A B ACB -∠∠=∠==∵DE 是AC 的垂直平分线∴AD DC=∴36ACD A ∠=∠=∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=∴B CDB∠=∠∴CB CD=∴BCD ∆是等腰三角形;(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b=-∵AB AC=∴AC a b=-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+.【点睛】此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.21、(1)23x =;(2)见解析【分析】(1)根据解分式方程的一般步骤解方程即可;(2)利用AAS 证出△ABE ≌△DCE ,从而得出EB=EC ,然后根据等边对等角即可得出结论.【详解】解:(1)11222x x x++=--()()1221x x +-=-+1241x x+-=--解得23x =经检验:23x =是原方程的解;(2)在△ABE 和△DCE 中A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE∴EB=EC∴EBC ECB∠=∠【点睛】此题考查的是解分式方程、全等三角形的判定及性质和等腰三角形的性质,掌握解分式方程的一般步骤、全等三角形的判定及性质和等边对等角是解决此题的关键.22、(1)①全等,理由见解析;②154Q v =c m/s ;(2)经过803s 点P 与点Q 第一次在边AB 上相遇.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(2)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【详解】(1)①∵t =1s ,∴BP =CQ =3×1=3cm .∵AB =10cm ,点D 为AB 的中点,∴BD =5cm .又∵PC =BC ﹣BP ,BC =8cm ,∴PC =8﹣3=5cm ,∴PC =BD .又∵AB =AC ,∴∠B =∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS).②∵v P ≠v Q ,∴BP ≠CQ ,若△BPD ≌△CPQ ,∠B =∠C ,则BP =PC =4cm ,CQ =BD =5cm ,∴点P ,点Q 运动的时间433BP t ==s ,∴515443Q CQ v t ===c m/s ;(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x =3x +2×10,解得:803x =,∴点P 共运动了803×3=80cm .△ABC 周长为:10+10+8=28cm ,若是运动了三圈即为:28×3=84cm .∵84﹣80=4cm <AB 的长度,∴点P 、点Q 在AB 边上相遇,∴经过803s 点P 与点Q 第一次在边AB 上相遇.【点睛】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.23、(1;(2)2--【分析】(1)首先将各项二次根式化到最简,然后进行加减计算即可;(2)首先去括号,然后进行加减计算即可.【详解】(1)原式=-(2)原式=(42⨯-+=2-+=2--【点睛】此题主要考查二次根式的混合运算,熟练掌握运算法则,即可解题.24、(1)无解(2)x=1-2【分析】(1)利用分式方程的解法,解出即可;(2)利用分式方程的解法,解出即可.【详解】(1)11322x x x -=---1=x-1-3(x-2)1=-2x+52x=4x=2检验:当x=2时,x-2=0x=2为曾根所以原方程无解(2)2121x x x =++-x(x-1)=2(x+2)+(x+2)(x-1)x 2-x=2x+4+x 2+x-24x=-2x=1-2检验:当x=1-2时,x+2≠0x-1≠0,所以x=1-2是解.【点睛】此题主要考查了解分式方程,关键点是要进行验证是否是方程的解.25、(1)(x-y)(m-1);(2)5x 3-5x【分析】(1)根据提公因式进行因式分解即可;(2)根据平方差公式进行整式的乘法运算即可.【详解】解:(1)原式=()()()()1m x y x y x y m ---=--;(2)原式=()235155x x x x -=-.【点睛】本题主要考查整式的乘除与因式分解,熟练掌握平方差公式及因式分解的方法是解题的关键.26、70°【解析】分析:在CH 上截取DH=BH ,通过作辅助线,得到△ABH ≌△ADH ,进而得到CD=AD ,则可求解∠B 的大小.详解:在CH 上截取DH=BH ,连接AD ,如图∵BH=DH ,AH ⊥BC ,∴△ABH ≌△ADH ,∴AD=AB∵AB+BH=HC ,HD+CD=CH∴AD=CD∴∠C=∠DAC ,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.。
2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C. D. 290x y ++=290x y +-=2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)133. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于()1,,AB a AD b AA c ===BM A. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 4. 已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P率k 的取值范围是( )A. 或B. 4k ≤-34k ≥1354k -≤≤C .或 D.或34k ≤-4k ≥15k ≤-34k ≥6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CN ND=MN =A .D. 27. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N分别为直线BC ,AD 上两个动点,则最小值为()MN二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 13.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO14.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===AC M l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u r u u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O P D O Q =l 理由.2024-2025学年重庆市高二上学期10月月考数学质量检测试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1. 已知直线过点且与直线平行,则直线的一般式方程为(1l()2,5A 2:240l x y +-=1l )A. B. 290x y ++=290x y +-=C .D. 290x y ++=290x y +-=【正确答案】B【分析】根据题意,得到,结合直线的点斜式方程,即可求解.12l k =-【详解】直线的斜截式方程为,则其斜率为,2l24y x =-+2-因为直线过点,且与直线平行,所以,1l()2,5A 2l12l k =-则直线的点斜式方程为,即为.1l()522y x -=--290x y +-=故选:B.2. 已知空间向量,,则向量在向量上的投影向量是( )(2,2,1)a =- ()4,0,3b = b aA. (4,0,3)B. (4,0,3}C. (2,2,-1)D.591559(2,2,-1)13【正确答案】C【分析】根据向量在向量上的投影向量的概念求解即可.【详解】向量在向量上的投影向量为,b a 22224035(2,2,1)22(1)9||||b aaa a a →→→→→→⋅⨯+-⋅=⋅=-++-故选:C3. 如图所示,在平行六面体中,为与的交点,若1111ABCD A B C D -M 11A C 11B D ,则等于( )1,,AB a AD b AA c ===BMA. B. 1122-+a b c1122++a b cC. D. 1122--+ a b c1122a b c-++ 【正确答案】D【分析】根据空间向量的线性运算即可得到答案.【详解】因为为与的交点,M 11A C 11B D 所以111111()22BM BB B M AA BD AA AD AB =+=+=+-.111112222AB AD A ca b A =-++=-++故选:D.4. 已知空间三点O (0,0,0),A (12),B-1,2),则以OA ,OB为邻边的平行四边形的面积为( )A. 8B. 4C. D. 【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出的面积进而求得四边形OAB △的面积.【详解】因为O (0,0,0),A (12),B-1,2),所以,OA ==OB ==2),1,2),OA OB ==-,1cos ,2OA OB ==所以sin ,OA OB =以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5. 已知,,,直线l 过点B ,且与线段AP 相交,则直线l 的斜()2,3A -()3,2B --()1,1P 率k 的取值范围是()A. 或B. 4k ≤-34k ≥1354k -≤≤C.或 D.或34k ≤-4k ≥15k ≤-34k ≥【正确答案】B【分析】画出图形,数形结合得到,求出,得到答案.BP BA k k k ≥≥,BP BA k k 【详解】如图所示:由题意得,所求直线l 的斜率k 满足,BP BA k k k ≥≥即且,所以.231325k -+≥=---123134k +≤=+1354k -≤≤故选:B .6. 在棱长为的正四面体中,,,则( )3ABCD 2AM MB = 2CNND =MN =A. D. 2【正确答案】B【分析】将用、、表示,利用空间向量数量积的运算性质可求得.MN AB AC AD MN【详解】因为,所以,,2AM MB = 23AM AB=又因为,则,所以,,2CN ND = ()2AN AC AD AN -=- 1233AN AC AD =+ 所以,,122333MN AN AM AC AD AB=-=+-由空间向量的数量积可得,293cos 602AB AC AB AD AC AD ⋅=⋅=⋅==因此,1223MN AC AD AB =+-=.==故选:B.7. 如图所示,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,E ,F 分别是BC ,CD 上的点,且BE =CF =a (0<a <1),则D ′E 与B ′F 的位置关系是()A. 平行B. 垂直C. 相交D. 与a 值有关【正确答案】B【分析】建立坐标系,利用向量的乘积计算出,即可求解''0D E B F ⋅=【详解】建立如图所示空间直角坐标系.则,,,,'(0,0,1)D (1,1,0)E a -'(1,1,1)B (0,1,0)F a -,'(1,1,1)D E a ∴=-- '(1,,1)B F a =---,''(1)(1)1()(1)(1)110D E B F a a a a ∴⋅=-⨯-+⨯-+-⨯-=--+=''D E B F∴⊥ 故选:B本题考查空间向量的垂直的定义,属于基础题8. 已知二面角C -AB -D 的大小为120°,CA ⊥AB ,DB ⊥AB ,AB =BD =4,AC =2,M ,N 分别为直线BC ,AD 上两个动点,则最小值为( )MN【正确答案】D【分析】将二面角放到长方体中,根据二面角的定义得到,根据C AB D --120CAF ∠=︒几何知识得到最小值为异面直线,的距离,然后将异面直线,的距离MNBC AD BC AD 转化为直线到平面的距离,即点到平面的距离,最后利用等体积求点BC ADE C ADE 到平面的距离即可.C ADE 【详解】如图,将二面角放到长方体中,取,过点作面交C AB D --4CE BD ==E ⊥EF ABD 面于点,ABD F 由题意可知,,所以为二面角的平面角,即AB AF ⊥CA AB ⊥CAF ∠C AB D --,120CAF ∠=︒因为,分别为直线,上的两个动点,所以最小值为异面直线,M N BC AD MNBC 的距离,AD 由题意知,,所以四边形为平行四边形,,CE BD ∥CE BD =CBDE CB DE ∥因为平面,平面,所以∥平面,则异面直线,的DE ⊂ADE CB ⊄ADE CB ADE BC AD 距离可转化为直线到平面的距离,即点到平面的距离,BC ADE C ADE 设点到平面的距离为,则,,C ADE d C ADED CAE V V --=1133ADE CAE S d S AB⋅⋅=⋅⋅ 在直角三角形中,,,所以,CAH 18012060CAH ∠=︒-︒=︒2CA =1HA=,CH EF ==3AF =AE ==直角梯形中,,ABDF FD ==AD ==,DE ==因为,,所以,,222AC AECE +=222AE DE AD +=CA AE ⊥AE DE ⊥,,122CAE S =⨯⨯=12ADE S =⨯= CAE ADE S AB d S ⋅===故选:D.方法点睛:求异面直线距离的方法:(1)找出异面直线的公垂线,然后求距离;(2)转化为过直线甲且与直线乙平行的平面与直线乙的距离.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9. 直线,则():10l x ++=A. 点在上B. 的倾斜角为(-l l 5π6C. 的图象不过第一象限D. 的方向向量为l l )【正确答案】BC【分析】利用点与直线的位置关系可判断A选项;求出直线的斜率,可得出直线的倾斜l l 角,可判断B 选项;作出直线的图象可判断C 选项;求出直线的方向向量,可判断D 选l l 项.【详解】对于A 选项,,所以,点不在上,A 错;2210-++≠ (-l 对于B 选项,直线的斜率为,故的倾斜角为,B 对;lk =l 5π6对于C 选项,直线交轴于点,交轴于点,如下图所示:l x ()1,0-y 0,⎛ ⎝由图可知,直线不过第一象限,C 对;l对于D 选项,直线的一个方向向量为,而向量与这里不共线,Dl )1-)1-(错.故选:BC.10. 下列结论正确的是()A. 两个不同的平面的法向量分别是,则,αβ()()2,2,1,3,4,2u v =-=-αβ⊥B. 直线的方向向量,平面的法向量,则l ()0,3,0a =α()1,0,2u =//l αC. 若,则点在平面内()()()2,1,4,4,2,0,0,4,8AB AC AP =--==--P ABC D. 若是空间的一组基底,则向量也是空间一组基底,,a b b c c a +++ ,,a b c【正确答案】ACD【分析】根据平面向量的法向量垂直判断A ,根据直线与平面的关系判断B ,根据空间中共面基本定理判断C ,由空间向量基本定理判断D.【详解】因为,所以,故A 正确;()()2,2,13,4,26820u v ⋅=-⋅-=-+-=αβ⊥因为直线的方向向量,平面的法向量,l ()0,3,0a =α()1,0,2u =不能确定直线是否在平面内,故B 不正确;因为,()0,4,82(2,1,4)(4,2,0)2AP AB AC→→=--=---=-所以,,共面,即点在平面内,故C 正确;AP AB ACP ABC 若是空间的一组基底,,,a b b c c a +++则对空间任意一个向量,存在唯一的实数组,d →(,,)x y z 使得,()()()d x a b y b c z c a =+++++于是,()()()d x z a x y b y z c =+++++ 所以也是空间一组基底,故D 正确.,,a b c故选:ACD.11. 如图,在多面体中,平面,四边形是正方形,且ABCDES SA ⊥ABCD ABCD DE ∥,分别是线段的中点,是线段上的一个动点SA 22,,SA AB DE M N ===,BC SB Q DC (含端点),则下列说法正确的是(),D CA. 存在点,使得Q NQ SB⊥B. 存在点,使得异面直线与所成的角为Q NQ SA 60oC. 三棱锥体积的最大值是Q AMN -23D. 当点自向处运动时,二面角的平面角先变小后变大Q D C N MQ A --【正确答案】ACD【分析】以A 为坐标原点建立空间直角坐标系,向量法证明线线垂直判断A 选项;向量法求异面直线所成的角判断选项B ;由,求体积最大值判断C 选项;向量法求Q AMN N AMQV V --=二面角余弦值的变化情况判断选项D.【详解】平面,四边形是正方形,SA ⊥ABCD ABCD 以A 为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,,,AB AD AS,,x y z由,22SA AB DE ===;()()()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,2,1,0,0,2,1,0,1,2,1,0A B C D E S N M ∴对于A ,假设存在点,使得,()(),2,002Q m m ≤≤NQ SB ⊥则,又,()1,2,1NQ m =--()2,0,2SB =-,解得:,()2120NQ SB m ∴⋅=-+=0m =即点与重合时,,A 选项正确;Q D NQ SB ⊥对于B ,假设存在点,使得异面直线与所成的角为,()(),2,002Q m m ≤≤NQ SA 60o,()()1,2,1,0,0,2NQ m SA =--=-,方程无解;1cos ,2NQ SA NQ SA NQ SA ⋅∴===⋅ 不存在点,使得异面直线与所成的角为,B 选项错误;∴Q NQ SA 60o对于C ,连接;,,AQ AMAN 设,()02DQ m m =≤≤,22AMQ ABCD ABM QCM ADQ mS S S S S =---=-当,即点与点重合时,取得最大值2;∴0m =Q D AMQ S △又点到平面的距离,N AMQ 112d SA ==,C 选项正确;()()maxmax 122133Q AMN N AMQ V V --∴==⨯⨯=对于D ,由上分析知:,()()1,2,1,1,1,1NQ m NM =--=-若是面的法向量,则,(),,m x y z =NMQ ()1200m NQ m x y z m NM x y z ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩ 令,则,1x =()1,2,3m m m =-- 而面的法向量,AMQ ()0,0,1n =所以,令,cos ,m nm n m n ⋅==[]31,3t m =-∈则,而,cos ,m n ==11,13t ⎡⎤∈⎢⎥⎣⎦由从到的过程,由小变大,则由大变小,即由小变大,Q D C m t 1t 所以先变大,后变小,由图知:二面角恒为锐角,cos ,m n故二面角先变小后变大,D 选项正确.故选:ACD.三、填空题(本题共3小题,每小题5分,共15分.)12. 已知点,则直线的倾斜角是______.)(),AB AB 【正确答案】π6【分析】根据已知两点的坐标求得直线的斜率,即可求得答案.AB 【详解】由于,)(),AB故直线的斜率为,AB k ==因为直线的倾斜角范围为,[0,π)故直线的倾斜角是,AB π6故π613.如图,在四棱锥中,平面平面,底面是矩形,P ABCD -PCD ⊥ABCD ABCD ,,点是的中点,点为线段上靠近的三26AB BC ==,⊥=PC PD PC PD O CD E PB B 等分点,则点到直线的距离为______.E AO【正确答案】3【分析】说明两两垂直,从而建立空间直角坐标系,求得相关点坐标,根据空,,OO OC OP '间距离的向量求法,即可求得答案.【详解】取的中点为,连接,因为为的中点,所以AB O ',,PO OO AE ',PC PD O =CD ,PO CD ⊥又平面平面,平面平面,平面,PCD ⊥ABCD PCD ABCD CD =PO ⊂PCD 所以平面,平面,所以,⊥PO ABCD OO '⊂ABCD PO OO '⊥又底面是矩形,点是的中点,的中点为,所以,ABCD O CD AB O 'OO CD '⊥以点为原点,所在直线分别为轴建立空间直角坐标系如图所示,O ,,OO OC OP ',,x y z由,得,,,6PC PD PC PD CD ⊥==132PO CD ==所以,()()()3,3,0,3,3,0,0,0,3A B P -点为线段上靠近的三等分点,则,E PB B 22(3,3,3)33PE PB ==- 则,所以,,()2,2,1E ()1,5,1AE =-()3,3,0AO =-则,,||AE ==AO AE AO⋅== 因此点到直线的距离,E AO 3d =故314.如图,在中,,过的中点的动直线与线段ABC V π6,4AC BC C ===ACM l 交于点,将沿直线向上翻折至,使得点在平面内的射影AB N AMN l 1A MN 1A BCMN 落在线段上,则斜线与平面所成角的正弦值的最大值为________.H BC 1A M BCMN【分析】首先求出中边,角的正弦与余弦值,以底面点为空间原点建系(如ABC V AB B B 图1),设点,由,得,求出坐标,由(),,A x y z '(),0,0H x (,0,)A x z ',,A C M 得出满足的关系式,从而可得的范围也即的范围,翻折过程MC AM A M '==,x z z A H '中可得,设,,由向量的数量积为0从而得出关于MN AA '⊥1,,02N a a ⎛⎫⎪⎝⎭[)0,4a ∈x 的表达式,求得的范围,再由线面角的正弦值得出结论.a x 【详解】中,根据余弦定理,π,4C ABC =△,得AB ==sin sin ACABB C =,由知,则,sin B =AC AB <B C <cos B =如图1,以底面点为空间原点建系,根据底面几何关系,得点,设点B ()()4,2,0,6,0,0A C ,点的投影在轴上,即,由(),,A x y z 'A '(),0,0H x x ()(),0,,5,1,0A x z M ',根据两点间距离公式,MC AM A M '==.=22(5)1x z -+= 图1 图2如图2,在翻折过程中,作于点,则,AMN A MN '△≌△AE MN ⊥E A E MN '⊥并且平面,,,AE A E E AE A E ='⊂' A AE '所以平面平面,MN ⊥,A AE AA ''⊂A AE '所以,即,其中.MN AA '⊥0MN AA '⋅=()4,2,AA x z '=--又动点在线段上,设,所以,且.N AB 1,,02N a a ⎛⎫ ⎪⎝⎭15,1,02MN a a ⎛⎫=-- ⎪⎝⎭ [)0,4a ∈由,得,0MN AA '⋅= ()()132245210,52,255x a a x a ⎛⎫⎛⎤----==+∈ ⎪ ⎥-⎝⎭⎝⎦又因为,对应的的取值为,即,22(5)1x z -+=z 40,5⎛⎤ ⎥⎝⎦40,5A H ⎛⎤'∈ ⎥⎝⎦由已知斜线与平面所成角是,1A MBCMN A MH '∠所以.sin A H A MH A M ⎛∠=∈ ⎝'''故斜线与平面1A MBCMN 四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知直线过点.l (2,2)P (1)若直线与垂直,求直线的方程;l 360x y -+=l (2)若直线在两坐标轴上的截距相等,求直线的方程.l l 【正确答案】(1); 380x y +-=(2)或y x =40x y +-=【分析】(1)由垂直斜率关系求得直线的斜率,再由点斜式写出方程;l (2)分别讨论截距为0、不为0,其中不为0时可设为,代入点P ,即可求得0x y m ++=参数m【小问1详解】直线的斜率为,则直线的斜率为,则直线的方程为360x y -+=3l 13-l ,即;()1223y x -=--380x y +-=【小问2详解】当截距为0时,直线的方程为;l y x =当截距不为0时,直线设为,代入解得,故直线的方程为l 0x y m ++=(2,2)P 4m =-l .40x y +-=综上,直线的方程为或l y x =40x y +-=16. 已知空间中三点,,.(),1,2A m -()3,1,4B -()1,,1C n -(1)若,,三点共线,求的值;A B C m n +(2)若,的夹角是钝角,求的取值范围.AB BCm n +【正确答案】(1);1-(2)且不同时成立.13m n +<10m n =-⎧⎨=⎩【分析】(1)由向量的坐标表示确定、,再由三点共线,存在使,AB CBR λ∈AB CB λ= 进而求出m 、n ,即可得结果.(2)由向量夹角的坐标表示求,再根据钝角可得cos ,AB BC <>,讨论的情况,即可求范围.2(3)2(1)180m n -+--<,AB BC π<>=m n +【小问1详解】由题设,,又,,三点共线,(3,2,6)AB m =-- (2,1,3)CB n =--A B C 所以存在使,即,可得,R λ∈AB CB λ=322(1)63m n λλλ-=⎧⎪=-⎨⎪-=-⎩210m n λ=⎧⎪=-⎨⎪=⎩所以.1m n +=-【小问2详解】由,(2,1,3)BC n =--由(1)知:当时,有;,AB BC π<>=1m n +=-而,的夹角是钝cos ,||||AB BC AB BC AB BC ⋅<>==AB BC角,所以,可得;2(3)2(1)182()260m n m n -+--=+-<m n +13<综上,且不同时成立.13m n +<10m n =-⎧⎨=⎩17. 如图,在四棱锥中,底面ABCD 为直角梯形,且,,P ABCD -AB AD ⊥2AD BC =u u u ru u u r已知侧棱平面ABCD ,设点E 为棱PD 的中点.AP ⊥(1)证明:平面ABP ;//CE (2)若,求点P 到平面BCE 的距离.2AB AP AD ===【正确答案】(1)见解析 (2【分析】(1)设为的中点,连接,,利用中位线的性质证明四边形是平F PA BF EF EFBC 行四边形,则可得平面.//CE ABP (2)点为坐标原点建立合适的空间直角坐标系,求出平面的法向量,A BCE (0,1,2)n =利用点到平面的距离公式即可.【小问1详解】设为的中点,连接,,F PA BF EF是的中点,,E PD 1//,2EF AD EF AD ∴=,且,2,//AD BC AD BC =∴ 12BC AD=,//,EF BC EF BC ∴=四边形是平行四边形,,∴EFBC //CE BF ∴又平面平面,BF ⊂ ,ABP CE ⊂/ABP 平面.//CE ∴ABP 【小问2详解】由于侧棱平面,面,AP ⊥ABCD ,AB AD ⊂ABCD ,,则以点为坐标原点,以,,所在的直线,AP AB AP AD ∴⊥⊥AB AD ⊥ A AD AB AP 为轴,轴,轴建立如图空间直角坐标系,x y z,,2AD = 112BC AD ∴==,,,,(0,0,2)P ∴(0,2,0)B (1,2,0)C (1,0,1)E ,,,(1,0,0)BC ∴= (0,2,1)CE =- (0,2,2)PB =-设平面的法向量,BCE (,,)n x y z =则有,即,00n BC n CE ⎧⋅=⎪⎨⋅=⎪⎩ 020x y z =⎧⎨-+=⎩令,则,1y =(0,1,2)n =点到平面的距离.∴PBCE ||||||||||||PB n PB n d PB n PB n ⋅⋅=⋅===⋅18. 如图1,在中,,,分别为边,的中点,且MBC △BM BC ⊥A D MB MC ,将沿折起到的位置,使,如图2,连接,2BC AM ==△MAD AD PAD △PA AB ⊥PB .PC(1)求证:平面;PA ⊥ABCD (2)若为的中点,求直线与平面所成角的正弦值;E PC DE PBD (3)线段上一动点满足,判断是否存在,使二面角PC G (01)PGPC λλ=≤≤λ的值;若不存在,请说明理由.G AD P --λ【正确答案】(1)证明见解析(2(3)存在,14λ=【分析】(1)由中位线和垂直关系得到,,从而得到线面垂直;PA AD ⊥PA AB ⊥(2)建立空间直角坐标系,求出平面的法向量,求出线面角的正弦值;(3)求出两平面的法向量,根据二面角的正弦值列出方程,求出,得到答案.14λ=【小问1详解】因为,分别为,的中点,所以.A D MB MC AD BC ∥因为,所以,所以.BM BC ⊥BM AD ⊥PA AD ⊥又,,平面,PA AB ⊥AB AD A ⋂=,AB AD ⊂ABCD 所以平面.PA ⊥ABCD 【小问2详解】因为,,,所以,,两两垂直.PA AB ⊥PA AD ⊥90DAB ∠=︒AP AB AD 以为坐标原点,所在直线分别为轴,A ,,AB AD AP ,,x y z 建立如图所示的空间直角坐标系,A xyz -依题意有,,,,,,A (0,0,0)()2,0,0B ()2,2,0C D (0,1,0)()0,0,2P ()1,1,1E 则,,,.(2,2,2)PC =- (1,0,1)DE = (2,1,0)BD =-(2,0,2)BP =- 设平面的法向量,PBD ()111,,n x y z =则有()()()()11111111112,1,0,,202,0,2,,220BD n x y z x y BP n x y z x z ⎧⋅=-⋅=-+=⎪⎨⋅=-⋅=-+=⎪⎩令,得,,所以是平面的一个法向量.12y =11x =11z =()1,2,1n = PBD 因为,cos ,DE n DE n DE n⋅〈〉====⋅所以直线与平面DE PBD 【小问3详解】假设存在,使二面角λG AD P --即使二面角G AD P --由(2)得,,(2,2,2)(01)PG PC λλλλλ==-≤≤所以,,.(2,2,22)G λλλ-(0,1,0)AD = (2,2,22)AG λλλ=-易得平面的一个法向量为.PAD ()11,0,0n =设平面的法向量,ADG ()2222,,n x y z =,()()()()()2222222222220,1,0,,02,2,22,,22220AD n x y z y AG n x y z x y z λλλλλλ⎧⋅=⋅==⎪⎨⋅=-⋅=++-=⎪⎩ 解得,令,得,20y =2z λ=21x λ=-则是平面的一个法向量.()21,0,n λλ=-ADG由图形可以看出二面角,G AD P --故二面角G AD P --则有,1cos ,n,解得,.=112λ=-214λ=又因为,所以.01λ≤≤14λ=故存在,使二面角14λ=G AD P --19. 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,,则欧几里得距离()11,A x y ()22,B x y ;曼哈顿距离,余弦距离(,)D A B =1212(,)d A B x x y y =-+-,其中(为坐标原点).(,)1cos(,)e A B A B =-cos(,)cos ,A B OA OB =〈〉O (1)若,,求,之间的曼哈顿距离和余弦距离;(1,2)A -34,55B ⎛⎫⎪⎝⎭A B (,)d A B (,)e A B (2)若点,,求的最大值;(2,1)M (,)1d M N =(,)e M N (3)已知点,是直线上的两动点,问是否存在直线使得P Q :1(1)l y k x -=-l ,若存在,求出所有满足条件的直线的方程,若不存在,请说明min min (,)(,)d O PD O Q =l 理由.【正确答案】(1)145(2)1-(3)存在,和1y =y x=【分析】(1)代入和的公式,即可求解;(,)d A B (,)e A B (2)首先设,代入,求得点的轨迹,再利用数形结合,结合公式(),N x y (,)1d M N =N ,结合余弦值,即可求解;(),e A B (3)首先求的最小值,分和两种情况求的最小值,对比后,(),D O P 0k =0k ≠(),d O P 即可判断直线方程.【小问1详解】,348614(,)125555d A B +=--+-==,cos(,)cos ,OA OB A B OA OB OA OB⋅=〈〉===;()(),1cos ,1e A B A B =-=-=【小问2详解】设,由题意得:,(,)N x y (,)|2||1|1d M N x y =-+-=即,而表示的图形是正方形,|2||1|1x y -+-=|2||1|1x y -+-=ABCD 其中、、、.()2,0A ()3,1B ()2,2C ()1,1D 即点在正方形的边上运动,,,N ABCD (2,1)OM =(,)ON x y = 可知:当取到最小值时,最大,相应的cos(,)cos ,M N OM ON =<> ,OM ON <>有最大值.(,)e M N 因此,点有如下两种可能:N ①点为点,则,可得;N A (2,0)ON =cos(,)cos ,M N OM ON =<>==②点在线段上运动时,此时与同向,取,N CD ON (1,1)DC =(1,1)ON = 则cos(,)cos ,M N OM ON =<>==的最大值为.>(,)e M N 1【小问3详解】易知,则min (,)D O P (,1)P x kx k -+(,)()|||1|d O P h x x kx k ==+-+当时,,则,,满足题意;0k =(,)()|||1|d O P h x x ==+min (,)1d O P =min (,)1D O P =当时,,0k ≠1(,)()1k d O P h x x kx k x k x k -==+-+=+⋅-由分段函数性质可知,min 1(,)min (0),k d O P h h k ⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭又且时等号成(0)|1|h k =-≥11k k h k k --⎛⎫=≥ ⎪⎝⎭1k =立.综上,满足条件的直线有且只有两条,和.:1l y =y x =关键点点睛:本题第二问为代数问题,转化为几何问题,利用数形结合,易求解,第3问的关键是理解,同样是转化为代数与几何相结合的问题.min min (,)(,)d O P D O Q =。
2024~2025学年度第一学期期中校际联考试题高二数学注意事项:1.本试题共4页,满分150分,时间120分钟.2.答卷前,务必将答题卡上密封线内的各项目填写清楚.3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,监考员将答题卡按顺序收回,装袋整理;试题不回收.第I 卷(选择题共58分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.( )A. B. C. D.2.已知集合,,则( )A. B. C. D.(0,1)3.过点,的直线的倾斜角为( )A. B. C.D.4.圆心为(-2,-1),且与轴相切的圆的方程是( )A. B.C. D.5.从标有数字1,2,3,4的四张卡片中任取两张,则这两张卡片上的数字相邻的概率是( )A.B.C.D.6.已知点关于轴的对称点为,则等于( )A. B. C.2D.7.若函数是上的减函数,则实数的取值范围是( )A. B. C.(-6,1)D.i 1i =+11i 22+11i 22-+11i 22--11i 22-{11}M xx =-<<∣{02}N x x =≤≤∣M N = [0,1)(1,2]-(1,2]()1,2P ()3,4Q π4-π3-π4π3x ()()22211x y -+-=()()22211x y +++=()()22214x y -+-=()()22214x y +++=13231234()2,1,1A -y B AB()()12,1,52lg ,1a x x f x x x ⎧-+≤=⎨-->⎩R a [6,1)-(),1-∞(),6-∞-8.已知过椭圆中心的直线交椭圆于、两点,是椭圆的一个焦点,则的周长的最小值为( )A.7B.8C.9D.10二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知直线,则下列选项中正确的有( )A.直线在轴上的截距为2B.直线的斜率为C.直线的一个方向向量为D.直线不经过第一象限10.关于,的方程表示的曲线可以是( )A.圆B.椭圆C.双曲线D.抛物线11.在平面直角坐标系中,双曲线的左、右焦点分别为、,过双曲线上的一点作两条渐近线的垂线,垂足分别为、,则( )A.双曲线B.焦点到渐近线的距离为C.四边形OMAN 可能为正方形D.四边形的面积为定值第II 卷(非选择题共92分)三、填空题(本题共3小题,每小题5分,共15分)12.若圆与圆交于,两点,则直线的方程为______.13.已知正四棱台的体积为14,若,,则正四棱台的高为______.14.已知/都是锐角,,,则的值为______.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)已知直线和直线.(I )当时,求实数的值;(II )当时,求两直线,间的距离.16.(本小题满分15分)如图,在三棱柱中,,分别为和的中点,设,,.22:194y x C +=C A B F C ABF △:2l y =-y ()v =x y 22142x y m m +=--xOy 22:1C x y -=1F 2F C A M N C 12OMAN 122240x y y ++=224240x y x y ++--=A B AB ABCD A B C D ''''-2AB =4A B ''=ABCD A B C D ''''-αβ4sin 5α=()5cos 13αβ+=cos β1:10l x y ++=2:260l x my ++=12l l ⊥m 12l l ∥1l 2l 111ABC A B C -D E 11B C AB AB a = AC b = 1AA c =(第16题图)(I )用,,表示向量;(II)若,,,求.17.(本小题满分15分)已知椭圆,且过点.(I )求椭圆的方程;(II )若直线与椭圆有且仅有一个交点,求实数的值.18.(本小题满分17分)已知圆过三点,,.(I )求圆的标准方程;(II )斜率为1的直线与圆交于,两点,若为等腰直角三角形,求直线的方程.19.(本小题满分17分)已知动点到点的距离与点到直线的距离相等.(I )求点的轨迹的方程;(II )设点,为轨迹上不同的两点,若线段的中垂线方程为,求线段的长.a b cDE 11AB AC AA ===160A AB BAC ︒∠=∠=190A AC ︒∠=DE BC ⋅()2222:10x y E a b a b +=>>)E :l y x m =+E m C ()1,3()2,2-()4,2C C M N CMN △P 3,02⎛⎫⎪⎝⎭P 32x =-P C M N C MN 50x y +-=MN2024~2025学年度第一学期期中校际联考试题高二数学参考答案及评分标准一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.B3.C4.B5.C6.D7.A8.D二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.若有两个正确选项,则选对一个得3分,全部选对得6分;若有3个正确选项,则选对一个得2分,选对两个得4分,全部选对得6分;有选错的得0分)9.BCD10.ABC11.ACD三、填空题(本题共3小题,每小题5分,共15分)12.13.14.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.解:(I )直线和直线.当时,,得.(II )当时,,得,此时直线和直线的距离.16.解:(I ).(II),,,则.17.解:(I )椭圆过点,解得椭圆的方程为:.2320x y --=3263651:10l x y ++=2:260l x my ++=12l l ⊥20m +=2m =-12l l ∥20m -=2m =1:10l x y ++=2:30l x y ++=d ==()1111111111222DE DA A A AE A B A C AA AB b c =++=-+-+=--11AB AC AA ===160A AB BAC ︒∠=∠=190A AC ︒∠=()2111111110111122222224DE BC b c b a b b c a b a c ⎛⎫⋅=--⋅-=--⋅+⋅+⋅=--+⨯⨯⨯+⨯⨯= ⎪⎝⎭()2222:10x y E a b a b+=>>)222261,c e a a a b c ⎧==⎪⎪⎪∴=⎨⎪=+⎪⎪⎩2226,2,4,a b c ⎧=⎪=⎨⎪=⎩∴E 22162x y +=(II )由(I )知椭圆的方程为:,联立得,由,得18.解:(I )设圆的方程是,其中,圆过三点,,,解得圆的一般方程为,故圆的标准方程为.(II )由(I )知圆的圆心为(1,-2),半径为5,设直线的方程为:,为等腰直角三角形,圆心到直线的距离,即,得或-8,直线的方程为:或.19.解:(I )设点,根据题意有上式两边同时平方得:,化简得,点的轨迹的方程为.(注:学生若用其它方法解答,只要解答正确,可参照给分.)(II )设,,线段的中点,线段的中垂线方程为,E 22162x y +=221,62,x y y x m ⎧+=⎪⎨⎪=+⎩2246360x mx m ++-=()223644360m m ∆=-⨯-=m =±C 220x y Dx Ey F ++++=2240D E F +-> C ()1,3()2,2-()4,21030,8220,20420,D E F D E F D E F +++=⎧⎪∴-++=⎨⎪+++=⎩2,4,20,D E F =-⎧⎪=⎨⎪=-⎩∴C 2224200x y x y +-+-=C ()()221225x y -++=C 0x y c -+=CMN △∴C 5d =35c +=2c =∴20x y -+=80x y --=(),P x y 32x +=2223322x x y ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭26y x =∴P C 26y x =()11,M x y ()22,N x y MN ()00,A x y MN 50x y +-=直线的斜率,由点,在抛物线上,可知,即,,故,直线的方程为,即,联立方程消去整理得,易知,,即线段的长为.∴MN 21211y y k x x -==-()11,M x y ()22,N x y 2:6C y x =2112226,6,y x y x ⎧=⎨=⎩()()()1212126y y y y x x ∴+-=-126y y +=03y ∴=02x =∴MN 32y x -=-10x y -+=26,10,y x x y ⎧=⎨-+=⎩y 2410x x -+=0∆>12124,1x x x x +==MN ∴===MN。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
重庆市九龙坡区杨家坪中学2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题...D ..下列方程是一元二次方程的是()20ax bx c ++=.211x x +=C .()23x x x-=.对于二次函数26)5y =+-的图象,下列说法正确的是(.图象与y 轴交点的坐标是(0,5)-B .对称轴是直线.顶点坐标为(6,5)-D .当6x <-时,.如图,AB 是O 的直径,40BCD ∠=︒ABD 的大小为(A .60︒.50︒45︒5.如图,已知抛物线2ax bx c ++与直线m +交于(3,A -于x 的不等式2ax +A .3x <-或0x >B .3x ≤-或0x ≥6.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有第②个图形有8颗棋子,第③个图形有为()A .36B .40C .497.估算73233⎛⎫⨯+ ⎪ ⎪⎝⎭的值在()A .8和9之间B .7和8之间C .6和8.如图,有一面积为2600m 的长方形鸡场,鸡场的一边靠墙(墙长篱笆围成,其中一边开有1m 的门,竹篱笆的总长为69m 则列方程正确的是()A .()6912600x x +-=C .()692600x x -=9.如图,抛物线2(0)y ax bx c a =++≠与点(0,2)-与点(0,3)-之间(不包含端点),顶点①30a c +=;②213a <<;③对于任意实数④关于x 的方程21ax bx c n ++=+没有实数根.其中结论正确的个数为A .1个B 10.已知两个多项式M ①若25N M -=时,则有②若a 为整数,且2M -③当0a ≠时,若M N N -④若当式子M ma +中a 以上结论正确的个数是(A .4B 二、填空题11.计算:01(2023)(2-+-12.若关于x 的一元二次方程是.13.如图,在ABC 中,14.如图,在平面直角坐标系中,15.如图,在Rt ABC △中,AB 于点D ,则图中阴影部分的面积是16.若关于x 的一元一次不等式组程1122y a y y-+=---的解是正整数,则所有满足条件的整数17.如图,在Rt ABC △中,∠直线CD 翻折得到ECD ,连接18.一个两位自然数m ,若各位数字之和小于等于位上的数字相加所得的数放在美数”;将m 的各个数位上的数字相加所得的数放在么称m ''为m 的“后置充美数()31212312219F -==.请计算数”(1069,0m a b a =+≤≤平方数,且()28m F n y +-四、作图题20.如图,在平面直角坐标系中,Rt ABC △三个顶点都在格点上,点A ,B ,C 的坐标分别为()4,1A -,()1,1B -,()1,3C -请解答下列问题:(1)ABC 与111A B C △关于原点O 成中心对称,画出111A B C △,并直接写出1C 的坐标为:__________;(2)画出ABC 绕原点O 逆时针旋转90︒后得到的222A B C △并直接写出2A 的坐标为:__________;(3)直接写出点A 旋转至2A 经过的路径长为:__________.六、作图题22.如图,在四边形ABCD 中,AD BC ∥,90D Ð=°,过点A 作AE BC ⊥于点E ,5AB =,7BC =,3BE =.动点P 从点B 出发,沿B A D →→运动,到达点D 时停止运动.设点P 的运动路程为x ,APE V 的面积为1y ..(1)请直接写出1y 与x 之间的函数关系式以及对应的x 的取值范围;(2)请在直角坐标系中画出1y 的图象,并写出函数1y 的一条性质;(3)若直线2y 的图象如图所示,结合你所画1y 的函数图象,直接写出当12y y >时x 的取值范围.(保留一位小数,误差不超过0.2)七、计算题(1)求小岛A ,B 之间的距离(结果保留根号)(2)渔船在P 处发生故障,在原地等待救援.一艘救援船以每小时出发先沿正西方向前往B 点去取修理的材料向以相同的速度前往P 点进行救援.救援船从发,以每小时30海里的速度沿射线上,从B 测得C 在B 的北偏西15︒方向.请通过计算说明救援船能否在补给船到达后的40分钟之内赶到P 点.(参考数据:八、应用题24.甲、乙两个旅行团计划自驾游.两个旅行团计划同一天出发,沿着不同的路线旅行至相同目的地.甲旅行团走路线一,全程米,若计划乙旅行团平均每天行驶路程是甲旅行团的天到达目的地.(1)求甲、乙两个旅行团各自计划旅行多少天;(2)甲、乙两旅行团开始各有20人参团,甲、乙旅行团计划每人的平均花费甲旅行团实际又加入了a 人(0)a >,经统计,甲旅行团每增加费将减少20元;乙旅行团人数实际增加了两个旅行团旅行天数与各自原计划旅行天数一致,九、问答题25.二次函数2(0)y ax bx c a =++≠经过点(0,2)A ,(1,0)B -,(4,0)C .(1)求该二次函数的解析式;(2)设点D 的横坐标为302m m ⎛⎫<< ⎪⎝⎭,过点D 作DE y ∥轴交直线交对称轴于点G ,以DG 、DE 为边构造矩形DEFG ,当矩形点D 的坐标;(3)将抛物线向右平移1个单位,向上平移2个单位后得到新抛物线十、证明题26.如图,在ABD △中,60BAD ∠=︒,2BD =,将边BD 绕点D 逆时针旋转120︒得到DC ,连接AC ,取AC 中点E ,连接DE .(1)如图1,若AD BD ⊥于点D ,求点A 到BC 的距离;(2)如图2,证明:2AB AD DE =+;(3)如图3,若点A 在平面内运动,取BC 中点F ,连接AF ,直接写出线段AF 的最大值.。
重庆杨家坪中学高二数学教材内容(一)
重庆杨家坪中学高二数学教材内容
引言
•杨家坪中学位于重庆市,是一所知名的高中学校。
•本文将重点讨论该校高二数学教材内容。
教材内容概述
•重庆杨家坪中学高二数学教材内容涵盖了多个主题,包括但不限于:
–函数与方程
–三角学
–解析几何
–概率与统计
函数与方程
•函数与方程是数学中的基础概念,重点内容包括:
–一元二次函数与二次方程
–三角函数与三角方程
–指数与对数函数
–高次多项式函数及其图像
三角学
•三角学是几何与代数的重要交叉领域,重点内容包括:–三角函数的定义与性质
–三角恒等式的证明与应用
–三角方程的解法
–三角函数图像与变换
解析几何
•解析几何是代数和几何相结合的学科,重点内容包括:–直线与平面的方程与性质
–点、直线、圆的位置关系
–曲线的参数方程与极坐标方程
–曲线与曲面的切线与法线
概率与统计
•概率与统计是数学中的实用分支,重点内容包括:–随机变量与概率分布
–数理统计的基本概念与方法
–抽样与统计推断
–统计图表的制作与分析
教材特点
•重庆杨家坪中学高二数学教材具有以下特点:
–注重基础知识的系统性与完整性
–强调数学与实际问题的结合
–推崇思辨与探究型学习方法
–追求数学思维与解题能力的培养
结论
•重庆杨家坪中学高二数学教材内容全面、系统,并注重培养学生的数学思维与解题能力。
•该教材的内容设计符合现代数学教育的要求,能够有效提高学生的数学素养和学习兴趣。
请注意,本文仅为参考示例,具体的内容和结构应根据实际情况进行调整。
重庆市育才中学校高2026届高二(上)十月月考数学试题参考答案一、选择题:本题共8个小题,每小题5分,共40分.1-4:ADBB5-8:CCBD8【解析】:如图所示,取PA 中点为O ,由于PB AB ⊥,PC AC ⊥,则OB OC OP OA ===,故O 是三棱锥的外接球的球心,易知4PA =,PB PC ==.过点P 作PH ABC ⊥平面,连接AH ,易知AH 过BC 中点M ,连接PM .因为AM =PM =,4PA =,则直线PA 与平面ABC 所成角PAM ∠,由余弦定理可得22243cos3PAM +-∠==,故选D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.三、填空题:本题共3个小题,每小题5分,共15分.2121==+OP d d ;9)8()8(88221,82,82222122212221=-+-≤--=⨯=-=-=d d d d BD AC S d BD d AC ABCD 当且仅当21d d =时取得等号.四、解答题:本题共5小题,15题13分,16、17题15分,18、19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.15.(1)过点(5,1)A -,点(3,7)B 的直线的两点式方程为:157135y x -+=-+,......................................................................................(2分)整理得:34190x y -+=∴直线l 的方程为34190x y -+=..........................................................................................(4分)(2)设线段MN 的中点为P ,则由(1,0)M ,(3,2)N 有(2,1)P ,且直线MN 的斜率为20131MN k -==-,因此线段MN 的垂直平分线l '的方程为:1(2)y x -=--,即30x y +-=,.........................(7分)由垂径定理可知,圆心C 也在线段MN 的垂直平分线上,则有301341904x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩∴圆C 的坐标是(1,4)-;..................................................(9分)圆的半径22(11)(40)25r MC ==--+-=,................................................................(11分)∴圆C 的标准方程是22(1)(4)20x y ++-=.....................................................................(13分)16.(1)连接1BC ,设11BC B C O = ,连接OD ,由三棱柱的性质可知,侧面11BCC B 为平行四边形,∴O 为1BC 的中点,........................................(2分)又∵D 为AB 中点,∴在1ABC 中,1//OD AC ,又∵OD ⊂平面1CDB ,1AC ⊄平面1CDB ,..................................................(5分)∴1//AC 平面1CDB ................................................................................(7分)(2)由题意可知1,,CA CB CC 两两垂直故以1,,CA CB CC 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()0,0,0C ,()6,0,0A ,()16,0,8A ,()3,4,0D ,()10,8,8B .所以()10,0,8AA = ,()3,4,0CD = ,()10,8,8CB =,...................................(9分)设平面1CDB 的法向量为n(),,x y z =,则1340880C y CBD n x n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令4x =,得()4,3,3n =- ;........................................................................(12分)设1AA 与平面1CDB 所成角为θ,则sin θ=111cos ,n AA n AA n AA ⋅===所以1AA 与平面1CDB 所成角的正弦值为33434..........................................................................(15分)17.(1)由BC BA ==90CBA ∠=︒,所以2AC =.取AC 的中点O ,连接PO ,BO ,由题意,得112PO BO AC ===,再由PB 222PO BO PB +=,即PO BO ⊥........(3分)由题易知PO AC ⊥,又AC BO O ⋂=,,BO AC ⊂面ABC ,所以⊥PO 平面ABC ,............(5分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC ..........................................................(6分)(2)由(1)可知PO OB ⊥,PO OC ⊥,又OB AC ⊥,故以OC ,OB ,OP 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()1,0,0C ,()0,1,0B ,()1,0,0A -,0,0,1.所以()1,0,1AP = ,()1,1,0BC =- ,()1,0,1PC =- ,...........................(8分)令(),0,AM AP λλλ==,()01λ<<所以()1,0,M λλ-.所以()2,0,MC λλ=--.设平面MBC 的法向量为m()111,,x y z =,则()1111020BC m x y MC m x z λλ⎧⋅=-=⎪⎨⋅=--=⎪⎩ 令11x =,得m 21,1,λλ-⎛⎫= ⎪⎝⎭;..................................................(10分)设平面PBC 的法向量为()222,,n x y z =,222200BC n x y PC n x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令21x =,得()1,1,1n = ;...................................................................(12分)则cos ,n m n m n m⋅=79=,设2t λλ-=,()1,t ∞∈+,则上式可化为2115450t t --=,..................................................(14分)即()()51110t t -+=,所以5t =(111t =-舍去),所以25λλ-=,解得13λ=.....................(15分)18.解:(1)设动点M 坐标为),(y x ,由MA MO 21=,即2222)3(21y x y x ++=+,.....................................................................................(4分)整理得4)1(22=+-y x ......................................................................................(6分)(2)设直线l 的方程为2-=kx y ,Q P ,两点的坐标分别为),(),(2211y x y x ,联立⎩⎨⎧-==+-24)1(22kx y y x ,整理得01)24()1(22=++-+x k x k (*)..........................................(9分)因为(*)式的两根为21,x x ,所以121222421,11k x x x x k k ++==++,........................................(10分)0)1(4)24(22>+-+=∆k k ,即34-<k 或0>k .........................................(11分)则2121212121212(2)(2)(1)2()43OP OQ x x y y x x kx kx k x x k x x ⋅=+=+--=+-++=-,..............(13分)将121222421,11k x x x x k k ++==++代入上式,化简解得2=k .........................................(15分)而2=k 满足0>∆,故直线l 的方程为)1(2-=x y .因为圆心)0,1(M 在直线l 上,所以4=PQ ...................................................................(17分)19.解:(1)在EB D '∆中,易得4B E '=,33B D '=,7DE =,由余弦定理可得2223cos 22B E B D DE DB E B E B D ''+-'∠=='',从而6DB E π'∠=..............(4分)提示:可建立空间坐标系利用向量求夹角的余弦值为32,从而得出6DB E π'∠=.(2)(i )曲线Γ是椭圆...............................................................................................(6分)因为二面角B AC D --为直二面角,且90ACB ︒∠=,所以B C α'⊥,如图1,不妨取AC 的中点为O ,以OD 为x 轴,OC 为y 轴,过点O 作B C '的平行线为z 轴建立空间直角坐标系.则点(0,3,23)B ',(0,1,0)E ,设(,,0)P x y ,(0,2,23)B E '=-- ,(,3,23)B P x y '=--,...........(8分)图1由(1)可知6PB E DB E π''∠=∠=,从而222183cos 24(3)12B E B P y PB E B E B P x y ''⋅-+'∠===''+-+ ,...............(10分)化简可得:22169x y +=,即为Γ的方程.......................................................(12分)说明:不同的建系可能得到不同的方程,只要得出椭圆的方程即可得分.(ii )将立体几何平面化,只需研究平面α上几何关系.不防将(i )中椭圆所在坐标系逆时针旋转90︒得到图2,在新坐标系下椭圆方程为22196x y +=,直线l 的方程为3530x y +-=,引理:点11(,)M x y 与直线0mx ny c ++=上一动点22(,)N x y 的最小曼哈顿距离为{}11min (,)max ,mx ny cd M N m n ++=.证明:如图3,当m n >,即12MM MM <时,由于111111(,)d M N MN N N MN N M MM =+≥+=,当点N 在点1M 处取得等号成立,即111min 1(,)mx ny c ny cd M N x m m+++=+=,同理可以得出m n ≤时的最小曼哈顿距离,综上{}11min (,)max ,mx ny cd M N m n ++=得证.设点(3cos ,6sin )M θθ.由引理可知:{}min 35333cos 6sin 53(,)5113max3,1M M x y d M N θθ+-+-==≥-,所以(,)d M N 的最小值为511-.........................................................(17分)图2图3。
2024年重庆市九龙坡区杨家坪中学小升初数学试卷一、填空题(每小题3分,共30分)1.(3分)假设的结果是x,那么与x最接近的整数是 。
2.(3分)有小中大三个正方体水池,从里面测量它们的边长分别是2米、3米、6米,把两堆沙分别倒入小、中号水池,水面分别上升了4厘米、6厘米,如果把两堆沙都倒入大号水池,大号水池水面上升 厘米。
3.(3分)A种酒精的浓度为40%,B种酒精的浓度为36%,C种酒精的浓度为35%,它们混合在一起得到了11千克浓度为38.5%的酒精溶液,其中B种酒精比C种酒精多3千克,则A种酒精有 千克。
4.(3分)一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高都是以厘米为单位的质数。
这个长方体的表面积是 平方厘米。
5.(3分)甲数是乙数的,乙数是丙数的,甲乙丙三个数的和152,甲为 ,乙为 ,丙为 。
6.(3分)从7开始,把7的倍数依次写下去,一直写到994,即71421……987994。
这个数是 位数。
7.(3分)一辆汽车从A地行驶到B地用了两天时间,第一天行驶了全程的多168千米,第二天行驶的路程和第一天行驶的路程的比是1:4,AB相距 千米。
8.(3分)有一个算式,左边括号里都是整数,右边答案写出了四舍五入后的近似值:≈1.16,那么算式左边三个括号里面从左到右依次是 。
9.(3分)某种电器上半月按定价1000元的价格出售,共销售50台,下半月降价5%,这样销售量增加了20%,所获利润比上半月多500元,这种电器每台的成本是 。
10.(3分)某数除以11余8,除以17余12,除以13余10,那么这个数最小可能是 。
二、计算题(每小题5分,共25分)11.(5分)计算:97×+77×+57×.12.(5分)计算题。
13.(5分)计算:(1×2+2×3)×(+)+(2×3+3×4)×(+)+……+(19×20+20×21)×(+)14.(5分)计算题。
重庆市2024—2025学年度上期高2026级半期考试数学试题(答案在最后)(满分150分,考试时间120分钟)注意事项1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 经过点()3,1,()2,0,则直线l 的倾斜角为()A.π4 B.π3C.2π3 D.3π4【答案】A 【解析】【分析】由两点坐标结合斜率公式直接求出斜率,再求出倾斜角,然后由点斜式写出直线方程.【详解】设直线l 的倾斜角为θ.直线l 经过点()3,1,()2,0,所以01123l k -==-,所以tan 1θ=,又0πθ≤<,所以π4θ=.故选:A.2.若直线210x ay ++=与直线220x y +-=互相垂直,则实数a 的值是()A.1 B.-1 C.4D.-4【答案】B 【解析】【分析】直接利用两直线垂直时系数的关系求解即可.【详解】由题可知,220a +=,解得1a =-.故选:B3.如图,在空间四边形ABCD 中,设,E F 分别是BC ,CD 的中点,则1()2AD DB DC →→→++=()A.AD →B.FA →C.AE →D.EF→【答案】C 【解析】【分析】根据平面向量的平行四边形法则得出2DB DC DE →→→+=,再由平面向量的三角形加法运算法则即可得出结果.【详解】解:由题可知,,E F 分别是BC ,CD 的中点,根据平面向量的平行四边形法则,可得2DB DC DE →→→+=,再由平面向量的三角形加法法则,得出:11()222AD DB DC AD DE AD DE AE →→→→→→→→++=+⨯=+=.故选:C.4.平面内点P 到()13,0F -、()23,0F 的距离之和是10,则动点P 的轨迹方程是()A.221259x y += B.2212516x y +=C.221259y x += D.2212516y x +=【答案】B 【解析】【分析】求出,,a b c 即可得出动点P 的轨迹方程.【详解】由题意,平面内点P 到()13,0F -、()23,0F 的距离之和是10,∴动点P 的轨迹E 为椭圆,焦点在轴上,3,210c a ==,解得:5a =,∴22216b a c =-=,∴轨迹方程为:2212516x y +=,故选:B.5.已如12,F F 是椭圆2212449x y +=的两个焦点,P 是椭圆上一点,1234PF PF =,则12PF F 的面积等于()A.24B.26C.D.【答案】A 【解析】【分析】由定义可得12214PF PF a +==,结合条件求出12,PF PF 即可求出面积.【详解】由椭圆方程可得焦点在y 轴上,7a =,b =,5c ==,由椭圆定义可得12214PF PF a +==,又1234PF PF =,则可解得128,6PF PF ==,12210F F c == ,满足2221212PF PF F F +=,则12PF PF ⊥,121212186242PF F PF P S F ⋅=⨯⨯∴==.故选:A.6.我国汉代初年成书的《淮南子毕术》中记载:“取大镜高悬,置水盆于下,则是四邻矣.”这是我国古代人民利用平面镜反射原理的首个实例,体现了传统文化中的数学智慧.已知从点()5,3-发出的一束光线,经x 轴反射后,反射光线恰好平分圆:()()22115x y -+-=的圆周,则反射光线所在的直线方程为()A.2310x y -+=B.2310x y --=C.3210x y -+=D.3210x y --=【答案】A 【解析】【分析】求得点()5,3-关于x 轴的对称点的坐标与圆的圆心坐标,由两点式可求反射光线所在直线方程.【详解】由()()22115x y -+-=,可得圆心(1,1)C ,由反射定律可知,点()5,3-关于x 轴的对称点()5,3--在反射光线上,又反射光线恰好平分圆:()()22115x y -+-=的圆周,所以反射光线过(1,1)C ,由直线的两点式方程可得反射光线所在直线方程为113151y x --=----,即2310x y -+=.故选:A.7.点P 是圆C :()()22332x y -+-=上一动点,过点P 向圆O :221x y +=作两条切线,切点分别为A ,B ,则四边形PAOB 面积的最大值为()A.B. C.D.【答案】D 【解析】【分析】将四边形PAOB 的面积表示为S =||PO 的最大值即可.【详解】由圆()()22:332C x y -+-=为,可得圆心为(3,3),由22:1O x y +=,可得圆心(0,0)O ,半径为1,连接PO ,则在PAO 中,||PA ==,所以四边形PAOB 的面积122||1||2PAO S S PA PA ==⨯⨯⨯== 所以||PO 最大时,四边形PAOB 面积的最大值,因为||CO ==,所以max ||||PO CO ==,所以四边形PAOB =故选:D.8.设A ,B 分别为椭圆C :22221x y a b+=(0a b >>)的左、右顶点,M 是C 上一点,且::3:5:7MA MB AB =,则C 的离心率为()A.13B.182C.11D.143【答案】D 【解析】【分析】由题意,根据余弦定理和同角的商数关系可得tan 11MA MAB k ∠==,tan 13MB MBA k ∠==-,设()00,M x y ,则22MA MBb k k a ⋅=-,得2245143b a =,结合离心率的概念即可求解.【详解】在MAB △中,由22237511cos 23714MAB +-∠==⨯⨯,得14sin MAB ∠=,所以tan 11MA MAB k ∠==,由22257313cos 25714MBA +-∠==⨯⨯,得sin MBA ∠=,所以tan 13MB MBA k ∠==-,设()00,M x y ,则200022000MA MBy y y k k x a x a x a⋅=⋅=+--,又2200221x y a b +=,∴()2222002b y x a a =--,∴22MA MB b k k a⋅=-,又451113143MA MBk k ⎛⎫⋅=⨯-=- ⎪ ⎪⎝⎭,∴2245143b a =,∴143e ==.故选:D.【点睛】关键点点睛:关键在于求得22MA MB b k k a ⋅=-,进而得2245143b a =,从而求得离心率,求解离心率问题常常需得到或构造,,a b c 的齐次式求解.二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆C 的中心为坐标原点,焦点12F F 、在x 轴上,短轴长等于2,焦距为,过焦点1F 作x 轴的垂线交椭圆C 于P 、Q 两点,则下列说法正确的是()A.椭圆C 的方程为2214x y += B.椭圆C的离心率为2C.1PQ =D.23PF =【答案】ABC 【解析】【分析】求出,,a b c 的值,可判断AB 选项的正误;设点1F为椭圆的左焦点,x =将代入椭圆方程,可求得||PQ 的长,可判断C 选项的正误;利用椭圆的定义可判断D 选项的正误.【详解】对于椭圆C,由已知可得222b c =⎧⎪⎨=⎪⎩1,2b c a ===,.对于A 选项,因为椭圆的焦点在x 轴上,故椭圆的方程为2214xy +=,故A 对;对于B选项,椭圆的离心率为2c e a ==,故B 正确;对于C 选项,设点1F为椭圆的左焦点,易知点1(F ,将x =代入椭圆方程可得12y =±,故||1PQ =,故C 正确;对于D 选项,111|||22|P PQ F ==,故212|17|2||42a PF PF =-=-=,故D 错误.故选:ABC.10.已知直线l :10kx y -+=和圆M :()()22124x y -+-=,则下列选项正确的是()A.直线l 恒过点()0,1B.圆M 与圆C :221x y +=有三条公切线C.直线l 被圆M 截得的最短弦长为D.圆M 上恰有4个点到直线l 的距离等于32,则474733k ⎛⎫∈ ⎪ ⎪⎝⎭【答案】ACD 【解析】【分析】根据定点的特征即可求解可判断A ,根据两圆的位置关系即可求解可判断B ,根据垂直时即可结合圆的弦长公式求解可判断C12<,求解即可判断D.【详解】对于A ,由直线l 的方程10kx y -+=,可知直线l 恒经过定点(0,1)P ,故A 正确;对于B ,由圆()()22124x y -+-=的方程,可得圆心(1,2)M ,半径2r =,由221x y +=,可得圆心(0,0)C ,半径为1,又||MC ==2121-<<+,所以圆M 与圆221x y +=相交,圆M 与圆C 有两条公切线,故B 错误;对于C ,由||PM =,根据圆的性质,可得当直线l 和直线PM 垂直时,此时截得的弦长最短,最短弦长为=,故C 正确;对于D ,当圆M 上恰有4个点到直线l 的距离等于32,则圆心M 到直线l :10kx y -+=的距离小于12,12<,整理得23830k k -+<,解得4433k +<<,故D 正确.故选:ACD.11.如图,点P 是棱长为2的正方体1111ABCD A B C D -的表面上一个动点,则()A.当P 在平面11BCC B 上运动时,三棱锥1P AA D -的体积为定值43B.当P 在线段AC 上运动时,1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦C.若F 是11A B 的中点,当P 在底面ABCD 上运动,且满足//PF 平面11B CD 时,PF 5D.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为2π42+【答案】AB 【解析】【分析】对A :由1AA D △的面积不变,点P 到平面11AA D D 的距离不变,求出体积即可;对B :以D 为原点,建立空间直角坐标系,设(),2,0P x x -,则()1,2,2D P x x =-- ,()112,2,0A C =-,结合向量的夹角公式,可判定B 正确;对C :设(),,0P m n ,求得平面11CB D 的一个法向量为()1,1,1n =--,得到()2216FP m =-+ C 错误.对D :由直线AP 与平面ABCD 所成的角为45︒,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定D 正确.【详解】对于A :1AA D △的面积不变,点P 到平面11AA D D 的距离为正方体棱长,所以三棱锥1P AA D -的体积不变,且1111142223323P AA D AA D V S AB -=⋅=⨯⨯⨯⨯= ,所以A 正确;对于B :以D 为原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得()12,0,2A ,()0,0,2D ,()10,2,2C ,设(),2,0P x x -,02x ≤≤,则()1,2,2D P x x =-- ,()112,2,0A C =-,设直线1D P 与11A C 所成角为θ,则111111111cos cos ,D P A C D P A C D P A C θ⋅===,因为011x ≤-≤,当10x -=时,可得cos 0θ=,所以π2θ=;当011x <-≤时,1cos 2θ==,由π0,2θ⎡⎤∈⎢⎥⎣⎦,所以ππ32θ≤<,所以异面直线1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,所以B 正确;对于C ,由()12,2,2B ,()10,0,2D ,()0,2,0C ,()2,1,2F ,设(),,0P m n ,02m ≤≤,02n ≤≤,则()12,0,2CB = ,()10,2,2CD =- ,()2,1,2FP m n =---设平面11CB D 的一个法向量为 =s s ,则11220220n CD b c n CB a c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 取1a =,可得1b =-,1c =-,所以()1,1,1n =--,因为//PF 平面1B CD ,所以()()2120FP n m n ⋅=---+=,可得1n m =+,所以FP =,当1m =时,等号成立,所以C 错误.对于D :因为直线AP 与平面ABCD 所成的角为45°,由1AA ⊥平面ABCD ,得直线AP 与1AA 所成的角为45°,若点P 在平面11DCC D 和平面11BCC B 内,因为145B AB ∠=︒,145D AD ∠=︒,故不成立;在平面11ADD A 内,点P 的轨迹是12AD =;在平面11ABB A 内,点P 的轨迹是122AB =;在平面1111D C B A 时,作PM ⊥平面ABCD ,如图所示,因为45PAM ∠=︒,所以PM AM =,又因为PM AB =,所以AM AB =,所以1A P AB =,所以点P 的轨迹是以1A 点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为12π2π4⨯⨯=,综上,点P 的轨迹的总长度为π42+D 错误;故选:AB.【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动态角的范围等问题,解决方法一般根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(2)对于线面位置关系的存在性问题,首先假设存在,然后在该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(3)对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.三、填空题:本题共3小题,每小题5分,共15分.12.已知空间的量()6,2,1a = ,()2,,3b x =,若()a b a -⊥ ,则x =______.【答案】13【解析】【分析】利用空间向量的坐标表示及数量积公式计算即可.【详解】因为()a b a -⊥ ,所以()0a b a -=,所以20a a b -=,又因为()6,2,1a = ,()2,,3b x = ,所以3641(1223)0x ++-++=,解得13x =.故答案为:13.13.设b 为实数,若直线y x b =+与曲线x =有公共点,则实数b 的取值范围是______.【答案】2⎡⎤-⎣⎦【解析】【分析】曲线x =表示是以原点为圆心,2为半径的半圆,直线y x b =+是一条斜率为1的直线,画出图象,结合图象,即可得出答案.【详解】由x =可得()2240x y x +=≥,即x =表示以原点为圆心,2为半径的半圆,直线y x b =+是一条斜率为1的直线,()2240x y x +=≥与y 轴交于两点分别是()0,2A ,()0,2B -,当点()0,2A 在直线y x b =+上时2b =;当直线y x b =+与()2240x y x +=≥2=,所以b =(舍)或b =-所以直线y x b =+与曲线x =有公共点,实数b满足2b -≤≤.实数b的取值范围为2⎡⎤-⎣⎦.故答案为:2⎡⎤-⎣⎦.14.我国著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微.”事实上,很多代数问题可以转化为几何问题加以解决.如:若实数,x y 满足228130x y x +-+=,则x y +的最小值为______,______.【答案】①.4-②.13+【解析】【分析】利用直线和圆的位置关系可得x y +的最小值,把转化为点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,结合图形可得答案.【详解】由228130x y x +-+=得()2243x y -+=,令x y t +=,则直线x y t +=与圆()2243x y -+=有公共点,所以圆心到直线x y t +=的距离为d =≤44t ≤≤+所以x y +的最小值为4-2=可以看作点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,设过点()1,0A 的直线与圆相切于点(),P x y.设直线方程为()1y k x =-,由()()22143y k x x y ⎧=-⎪⎨-+=⎪⎩,得()()2222182130k x k x k +-+++=,()()()22228241130k k k ∆=+-++=,解得2k =±,结合图形可知2k =,把2k =代入联立后的方程可得切点(P ,代入可得13+.故答案为:4613+.【点睛】关键点点睛:本题求解的关键是把目标式转化为点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,数形结合可得答案.四、解答题:本题共5小题,共77分,(15题13分,16-17题15分,18-19题17分)解答应写出文字说明、证明过程或演算步骤.15.如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,AE ⊥底面ABCD ,M 、N 分别为DG 、EF 的中点,1EG =.(1)求证://MN 平面CFG ;(2)求直线AN 与平面CFG 所成角的正弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)建立空间直角坐标系,求得直线MN 的方向向量31,,12MN ⎛⎫=- ⎪⎝⎭ ,求得平面CFG 的法向量1n ,然后利用10n MN ⋅= ,证明1MN n ⊥,从而得出//MN 平面CFG ;(2)求得直线AN 的方向向量()1,0,2AN = ,由(1)知平面CFG 的法向量1n,结合线面角的向量公式即可得解.【小问1详解】因为四边形ABCD 为正方形,AE ⊥底面ABCD ,所以AB ,AD ,AE 两两相互垂直,如图,以A 为原点,分别以AB ,AD ,AE方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系A xyz -,由题意可得0,0,0,()2,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2E ,()2,0,2F ,()0,1,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N ,则()0,2,2CF =- ,()2,1,2CG =-- ,31,,12MN ⎛⎫=- ⎪⎝⎭ 设平面CFG 的一个法向量为1 =1,1,1,则11n CFn CG ⎧⊥⎪⎨⊥⎪⎩ ,故11·=0·=0n CF n CG ⎧⎪⎨⎪⎩ ,即11111220220y z x y z -+=⎧⎨--+=⎩,则111112y z x z =⎧⎪⎨=⎪⎩,令12z =,得()11,2,2n =,所以()1331,2,21,,111221022n MN ⎛⎫⎛⎫⋅=⋅-=⨯+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭ ,所以1MN n ⊥,又MN ⊄平面CFG ,所以//MN 平面CFG .【小问2详解】由(1)得直线AN 的一个方向向量为()1,0,2AN = ,平面CFG 的一个法向量为()11,2,2n =,设直线AN 与平面CFG 所成角为θ,则111sin cos ,3n AN n AN n AN θ⋅=====⋅ ,所以直线AN 与平面CFG所成角的正弦值为3.16.已知点()2,3-在圆22:860C x y x y m +-++=上.(1)求该圆的圆心坐标及半径长;(2)过点()1,1M -,斜率为43-的直线l 与圆C 相交于,A B 两点,求弦AB 的长.【答案】(1)圆心坐标为()4,3-,半径长为2(2)165【解析】【分析】(1)先根据点在圆上求出参数m ,再将圆的方程化为标准方程,即可得出圆心及半径;(2)先写出直线方程,求出圆心到直线的距离,再根据圆的弦长公式l =.【小问1详解】因为点()2,3-在圆22:860C x y x y m +-++=上,所以4916180m +--+=,解得21m =,所以该圆的标准方程为()()22434x y -++=,所以该圆的圆心坐标为()4,3-,半径长为2;【小问2详解】因为直线l 过点()1,1M -,斜率为43-,所以直线l 的方程为()4113y x +=--,即4310x y +-=,则圆心()4,3-到直线l 的距离65d ==,所以165AB ===.17.已知椭圆C :()222210x y a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,1F 、2F 是椭圆C 的左、右两个焦点,12F F =,P 是椭圆C 上的一个动点.(1)求椭圆C 的标准方程;(2)若点P 在第一象限,且1214PF PF ⋅≤ ,求点P 的横坐标的取值范围.【答案】(1)2214x y +=(2)(.【解析】【分析】(1)依题意得焦点坐标,再利用椭圆的定义求得a ,进而求得b 即可;(2)设(),(0,0)P x y x y >>,从而可求得()2212134PF PF x y ⋅=--+≤ ,再把2214x y =-代入求解即可.【小问1详解】由已知得2c =c ∴=,()1F ∴,)2F ,142MF +==,同理2432MF =,1224a MF MF ∴=+=,2a ∴=,1b ∴==,∴椭圆C 的标准方程为2214x y +=.【小问2详解】设(),(0,0)P x y x y >>,且2214x y +=,则()1,PF x y =- ,)2,PF x y =- ,()2212134PF PF x y ∴⋅=--+≤ .由椭圆方程可得()2213144x x --+-≤,整理得239x ≤,所以0x <≤,即点P 的横坐标的取值范围是(.18.如图,在三棱柱111ABC A B C -中,底面是边长为2的等边三角形,12CC =,D ,E 分别是线段AC ,1CC 的中点,1C 在平面ABC 内的射影为D .(1)求证:1A C ⊥平面BDE ;(2)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(3)若点F 为线段11B C 上的动点(不包括端点),求平面FBD 与平面BDE 夹角的余弦值的取值范围.【答案】(1)证明过程见解析(2)4(3)1,22⎛ ⎝⎭【解析】【分析】(1)作出辅助线,得到BD ⊥平面11ACC A ,BD ⊥1AC ,又平行四边形11ACC A 为菱形,故1AC ⊥1AC ,又1//DE AC ,从而得到线面垂直,(2)建立空间直角坐标系,由(1)知,1AC ⊥平面BDE ;故平面BDE的一个法向量为(10,3,A C =- ,利用点到平面的距离向量公式求出答案;(3)设111,01C F C B λλ=<<,求出,Fλ,求出平面FBD 的法向量,结合平面BDE 的一个法向量为(10,3,A C =-,从而得到1cos ,A C m =,换元后,得到11cos ,,22AC m ⎛⎫= ⎪ ⎪⎝⎭ .【小问1详解】连接11,C D AC ,因为1C 在平面ABC 内的射影为D ,所以1C D ⊥平面ABC ,因为,BD AC ⊂平面ABC ,所以1C D ⊥BD ,1C D ⊥AC ,因为ABC V 为边长为2的等边三角形,D 是线段AC 的中点,所以BD ⊥AC ,因为1C D AC D = ,1,C D AC ⊂平面11ACC A ,所以BD ⊥平面11ACC A ,因为1A C ⊂平面11ACC A ,所以BD ⊥1AC ,因为112C C AC ==,四边形11ACC A 为平行四边形,所以平行四边形11ACC A 为菱形,故1AC ⊥1AC ,因为D ,E 分别是线段AC ,1CC 的中点,所以1//DE AC ,故1AC ⊥DE ,因为DE BD D ⋂=,,DE BD Ì平面BDE ,所以1AC ⊥平面BDE ;【小问2详解】由(1)知,1,,C D AC BD 两两垂直,以D 为坐标原点,1,,BD DA C D 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为1C D ⊥AC ,D 是线段AC 的中点,所以由三线合一可得112C C AC ==,又2AC =,故1ACC △为等边三角形,(()()11110,,0,1,0,,,,,22A C B C F B ⎛- ⎝,由(1)知,1AC ⊥平面BDE ;故平面BDE的一个法向量为(10,3,A C =-,点F 到平面BDE 的距离11334DF A C d A C⋅== ;【小问3详解】点F 为线段11B C 上的动点(不包括端点),设111,01C F C B λλ=<<,(,Fs t ,则()),,0s t λ=,故,s tλ==,故,Fλ,设平面FBD 的法向量为(),,m x y z =,则())(),,0,,,0mDB x y z m DF x y z x y λλ⎧⋅=⋅==⎪⎨⋅=⋅=+=⎪⎩,解得0x =,令1y =,则33z =-,故30,1,3m ⎛⎫=- ⎪ ⎪⎝⎭,又平面BDE的一个法向量为(10,3,A C =-,故111cos ,A C m A C m A C m ⋅==⋅ ,令()32,3q λ-=∈,则1cos ,A C m ==,因为111,32q⎛⎫∈ ⎪⎝⎭,故2111124443q ⎛⎫⎛⎫-+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,22⎛⎫ ⎪⎪⎝⎭,平面FBD 与平面BDE 夹角的余弦值取值范围是1,22⎛⎫⎪ ⎪⎝⎭.【点睛】立体几何二面角求解方法:(1)作出辅助线,找到二面角的平面角,并结合余弦定理或勾股定理进行求解;(2)建立空间直角坐标系,求出平面的法向量,利用空间向量相关公式求解.19.已知点A ,B 是平面内不同的两点,若点P 满足PAPBλ=(0λ>,且1λ≠),则点P 的轨迹是以有序点对(),A B 为“稳点”的λ—阿波罗尼斯圆.若点Q 满足QA QB μ⋅=(0μ>),则点Q 的轨迹是以(),A B 为“稳点”的μ—卡西尼卵形线.已知在平面直角坐标系中,()2,0A -,(),B a b (2a ≠-).(1)当2a =,0b =时,若点P 的轨迹是以(),A B 为“稳点”阿波罗尼斯圆,求点P 的轨迹方程;(2)在(1)的条件下,若点Q 在以(),A B 为“稳点”的5—卡西尼卵形线上,求OQ (O 为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若0b =,λ=试判断是否存在实数a ,μ,使得以(),A B 为“稳点”—阿波罗尼斯圆与μ—卡西尼卵形线都关于同一个点对称,若存在,求出实数a ,μ的值,若不存在,请说明理由.【答案】(1)221240x y x +-+=(2)[]1,3(3)不存在,理由见解析【解析】【分析】(1)由题意可知PA PB =,设:(),P x y=,整理计算即可求解;(2)设(),Q x y ,由定义得到()222242516x y x ++=+,从而有2240y x =-≥,求得209x ≤≤,再由OQ =(3)由0b =,λ=(),A B 为“稳点”一阿波罗尼斯圆的方程:()22244240x y a x a +-++-=,再结合对称性及QA QB μ⋅=得到μ—卡西尼卵形线,关于点2,02a -⎛⎫ ⎪⎝⎭对称,从而得到2222a a -+=推出矛盾,即可解决问题.【小问1详解】由已知()2,0A -,()2,0B 且PA PB=(),P x y=,∴()()22222222++=-+x y x y ,整理得:221240x y x +-+=,∴点P 的轨迹方程为:221240x y x +-+=.【小问2详解】由(1)知()2,0A -,()2,0B ,设(),Q x y,由5QA QB ⋅=,5=,所以()222242516x y x ++=+,2240y x =-≥,整理得42890x x --≤,即()()22190x x +-≤,所以209x ≤≤,OQ ==209r ≤≤,得13OQ ≤≤,即OQ 的取值范围是[]1,3.【小问3详解】若0b =,则以(),A B 为“稳点”—阿波罗尼斯圆的方程为()()222222x y x a y ⎡⎤++=-+⎣⎦,整理得()22244240x y a x a +-++-=,该圆关于点()22,0a +对称.由点()2,0A -,(),0B a 关于点2,02a -⎛⎫ ⎪⎝⎭对称及QA QB μ⋅=,可得μ—卡西尼卵形线关于点2,02a -⎛⎫ ⎪⎝⎭对称,令2222a a -+=,解得2a =-,与2a ≠-矛盾,所以不存在实数a ,μ,使得以(),A B 一阿波罗尼斯圆与μ—卡西尼卵形线都关于同一个点对称.。
重庆市第十一中学校2024-2025学年高二上学期期中考试数学试卷一、单选题1.直线l 过(,),(,)()P b c b Q a c a a b ++≠两点,则直线l 的斜率为()A .a b a b+-B .a b a b-+C .1D .1-2.若平面α的法向量为()4,4,2n =--,方向向量为(),2,1x 的直线l 与平面α垂直,则实数x =()A .4B .4-C .2D .2-3.圆心为(1,1)-且过原点的圆的一般方程是()A .22220x y x y ++-=B .22220x y x y +-+=C .22220x y x y +--=D .222210x y x y ++-+=4.椭圆22221x y a b +=和2222(0,0,,0)x y k a b a b k a b+=>>≠>一定具有()A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长轴长5.如图,三棱锥O ABC -中,,OA a OB b OC c === ,点N 为BC 中点,点M 满足2AM MO =,则MN =()A .111233a b c-- B .111322a b c-++C .211322a b c-++D .121332a b c-+6.若圆221:4C x y +=与圆222:()()1C x a x a -++=有公切线,则实数a 的范围是()A .[,]22-B .,⎛⎫-∞+∞ ⎪ ⎪⎝⎦⎣⎭C .(,1][1,)-∞-+∞D .[1,1]-7.设椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F 、2F ,点P 在椭圆E 上,若离心率e 满足12PF e PF =,则椭圆E 的离心率e 的取值范围为()A .(1⎤⎦B .20,2⎛ ⎝⎦C .⎫⎪⎪⎣⎭D .)1,18.已知22221122121216(,,,R)x y x y x x y y +=+=∈,且12120x x y y +=,则代数式221212()(x x y y +++-的最小值为()A .B .18C .12D .8二、多选题9.已知直线1:10l ax y ++=,直线2:10l x ay +-=,则下列说法正确的是()A .若12l l //,则1a =或1a =-B .若12l l ⊥,则0a =C .直线1l 过定点()0,1-D .若直线2l 与坐标轴围成的三角形的面积为12,则1a =10.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为22322()x y x y +=,则下列说法正确的是()A .四叶草曲线有四条对称轴B .设P 为四叶草曲线上一点,且在第一象限内,过P 作两坐标轴的垂线,则两垂线与两坐标轴围成的矩形面积的最大值为18C .四叶草曲线上的点到原点的最大距离为14D .四叶草曲线的面积小于π411.已知正方体1111ABCD A B C D -棱长为1,动点M 满足()1,,AM xAB y AD z AA x y z =++∈R,则()A .当10,2x y z ===时,则三棱锥M ABD -的体积为112B .当11,2x y z ===时,直线AM ⊥平面1A BD C .当1,12x y z ===时,直线//AM 平面1C BD D .当1x y z ++=且23AM =时,点M 的轨迹长度为2π3三、填空题12.已知直线:1:210l x y +-=与直线2:2430l x y ++=,则这两直线之间的距离为.13.在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且△PAD 是正三角形,E 是PC 的中点,则异面直线DE 与PB 所成角的余弦值是.14.已知P ,Q 为椭圆2212516x y+=上的动点,直线PQ 与圆22():21M x y -+=相切,切点A 恰为线段PQ 的中点,当直线PQ 斜率存在时点A 的横坐标为.四、解答题15.已知ABC V 的顶点坐标分别为(2,4)A -,(1,3)B -,(2,6)C .(1)求边AB 的垂直平分线l 的方程;(2)求三角形ABC 的外接圆方程.16.在直三棱柱111ABC A B C -中,△ABC 为等腰直角三角形,1,,2AB AC AB AC AA AB ⊥==,点M 在侧棱1CC 上,且满足114CM CC =.(1)求证:1BM A C ⊥;(2)求直线1BA 与平面ABM 所成的角的正弦值.17.已知椭圆2222:1(0)x y E a b a b +=>>的长轴长为3M 在椭圆E 上.(1)求椭圆E 的方程;(2)设直线y kx =E 相交于不同的两点P 和Q ,当PQ =时,求实数k 的值.18.如图1所示的图形中,四边形ABCD 为菱形,60BAD ∠=︒,PAD △和BCQ △均为直角三角形,90PDA QCB ∠=∠=︒,22PD AD CQ ===,现沿AD 和BC 将PAD △和BCQ △进行翻折,使//PD QC (,PD QC 在平面ABCD 同侧),如图2(或图3)(1)证明://BQ 平面PAD ;(2)如图2,若PD ⊥平面ABCD ,求点Q 到平面PBD 距离;(3)如图3,若二面角P AD B --为120︒时,判断平面PBQ 与平面PBD 是否垂直?19.已如椭圆222:1(0)2x y E b b +=>的焦点在x 轴,离心率22e =,点P 在直线2x =上.(1)求实数b 的值;(2)设F 是椭圆E 的右焦点,若Q 是椭圆E 上一点,且满足0PF QF ⋅=,设直线PQ 和直线OQ(O 为坐标原点)的斜率分别为12,k k ,证明:1212k k ⋅=-;(3)若点P 的纵坐标为12,过P 作直线l 交椭圆E 于不同的两点M 和N ,在线段MN 上取点H (异于,M N 两点)满是PM HMPN HN=,证明:点H 在定直线上.。
A
A
D
C
B B
C
2010~2011年度杨家坪中学高二中期数学试题(文科)
一、选择题(本大题共10小题,每小题5分,满分50分)
1.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.已知直线l 及三个不同平面,,αβγ,给出下列命题 ( ) A .若l ∥α,l ∥β,则α∥β
B .若α⊥β,α⊥γ,则β⊥γ
C .若l ⊥α,l ⊥β,则 α∥β
D .若l ⊥β,则α⊥β
3.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有( )
A.A 55·A 2
4种
B.A 55·A 2
5种
C.A 55·A 2
6种
D.A 77-4A 6
6种
4.已知m 、n 是两条不同直线,α、β是两个不同平面,有下列4个命题:① 若α⊂n n m ,//, 则m ∥α; ② 若αα⊄⊥⊥n m n m ,,,则α//n ; ③ 若βαβα⊥⊥⊥n m ,,,则m n ⊥; ④ 若m n 、是异面直线,ββα//,,m n m ⊂⊂,则α//n .其中正确的命题有 ( )
A .①②
B .②③
C .③④
D .②④
5.已知正四棱柱1111ABCD A B C D -中,12AA AB
=,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为 ( ) A
B.
1
5
D.
35
6.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点. 点1C 到平面1AB D 的距离 ( )
A .a 42
B .a 82
C .a 423
D .a 2
2
7.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为 ( ) (A
34
8.在北纬0
45圈上有甲、已两地,甲地位于东径0
120,乙地位于西径0
150,则地球(半径为R )表面上甲、乙两地的最短距离为 ( ) (A )R π (B )
R 2
π
(C )
R 2
3π
(D )R 3π
9.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个 动点E ,F
,且EF =
,则下列结论中错误的是( ) A .AC BE ⊥ B .//EF ABCD 平面
B 1
C .三棱锥A BEF -的体积为定值
D .异面直线,A
E B
F 所成的角为定值
10.已知三棱柱111ABC A B C
-的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面
直线
AB 与1CC 所成的角的余弦值为( )
(A
)
4 (B )4 (C )4
(D) 34 二、填空题(本大题共5小题,每小题5分,满分25分)
11.2个男生与3个女生共5人站成一排,其中女生不相邻,共有 种站法。
(用数字作答)
12.已知二面角βα--l 为60,平面α内一点A 到平面β的距离为4AB =,则B 到平面α的距离为 13.在三棱锥S ABC -中,两两垂直的棱SA 、SB 、SC 长分别为3,4,5,且它的四个顶点都在同一个球面上,则这个球的表面积为 。
14.在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 15.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为0
60的菱形,则该棱柱的体积等于 。
三、解答题(本大题共6小题,满分75分)
16.在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,EF=3,求AD 与BC 所成角的大
小。
17.若(1+x )6
(1-2x )5
=a 0+a 1x +a 2x 2
+…+a 11x 11
. 求:①a 1+a 2+a 3+…+a 11;
②a 0+a 2+a 4+…+a 10.
18. 在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55.
①求侧面SBC 与底面ABC 所成二面角的大小; ②求三棱锥的体积V S -AB C .
19.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===.将ADC ∆ 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.
①若E 为AD 的中点,试在线段CD 上找一点F ,使 EF ∥平面ABC ,并加以证明; ②求证: BC ⊥平面ACD 。
图2
图1
②求BC1到平面A1DC的距离。