IGBT的工作原理和工作特性84658教程文件
- 格式:doc
- 大小:315.50 KB
- 文档页数:25
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种高性能功率半导体器件,常用于控制和调节高电压和高电流的电力电子应用中。
本文将详细介绍IGBT的工作原理及其相关特性。
一、IGBT结构IGBT由三个主要部份组成:N型电流扩散层、P型基区和N型绝缘栅区。
它的结构类似于MOSFET和双极晶体管的结合体,具有MOSFET的高输入阻抗和双极晶体管的低导通压降特性。
二、IGBT工作原理1. 关断状态:当IGBT的栅极电压为0V时,处于关断状态。
此时,N型电流扩散层和N型绝缘栅区之间形成为了反向偏置的PN结,阻挠了电流的流动。
2. 开通状态:当给IGBT的栅极施加正向电压时,即使很小的电压也能引起电流的流动。
在开通状态下,栅极电压控制导通电流的大小。
3. IGBT的导通过程:当栅极电压高于临界电压时,电流开始从N型电流扩散层注入到P型基区,形成NPN型双极晶体管。
由于双极晶体管的放大作用,电流迅速增加。
同时,由于N型绝缘栅区的存在,栅极电压控制了电流的大小。
因此,IGBT具有较低的导通压降。
4. IGBT的关断过程:当栅极电压降低到临界电压以下时,电流开始减小。
在关断过程中,IGBT的关断速度取决于去除电荷的速度。
通常,通过施加负向电压或者短路栅极电压来加快关断速度。
三、IGBT的特性1. 高输入阻抗:由于IGBT的栅极绝缘层,其输入电流极小,因此具有高输入阻抗。
这使得IGBT可以被各种控制电路轻松驱动。
2. 低导通压降:IGBT的导通压降较低,这意味着在导通状态下能够减小功率损耗,提高效率。
3. 大功率承受能力:IGBT能够承受较高的电压和电流,适合于高功率应用,如变频器、电力传输、电动车等。
4. 快速开关速度:IGBT具有较快的开关速度,可以实现高频率的开关操作,适合于需要频繁开关的应用。
5. 温度依赖性:IGBT的导通压降和关断速度受温度影响较大。
igbt的工作原理IGBT(Insulated Gate Bipolar Transistor)是一种广泛应用于电力电子领域的功率半导体器件,它结合了场效应晶体管(MOSFET)和双极型晶体管(BJT)的优点,具有高电压、高电流和高速开关特性。
IGBT的工作原理是指其在电路中的工作方式和特性,下面将详细介绍IGBT的工作原理。
当IGBT处于关断状态时,它的栅极和集电极之间的通道是关闭的,没有电流通过。
当施加正向电压到栅极时,栅极和发射极之间形成一个PN结,使得集电极和发射极之间的通道导通,电流开始流动。
IGBT的导通过程可以分为三个阶段,开启、饱和和关断。
首先是开启阶段,当正向电压施加到栅极时,栅极和发射极之间的PN结被击穿,形成导通通道。
此时,IGBT的电流开始增加,但电压降低。
接下来是饱和阶段,当电流继续增加时,IGBT的电压降低到一个稳定的值,此时IGBT处于饱和状态。
在饱和状态下,IGBT的电压降低到很小的值,电流可以自由地通过。
最后是关断阶段,当施加负向电压到栅极时,PN结被截断,IGBT的导通通道关闭,电流停止流动。
IGBT回到关断状态,等待下一次开启。
IGBT的工作原理可以用简单的模型来描述,当栅极电压施加时,形成PN结,使得集电极和发射极之间的通道导通,电流开始流动;当栅极电压去除时,PN结截断,导通通道关闭,电流停止流动。
这种工作原理使得IGBT在电力电子领域得到广泛应用,如变频空调、电动汽车、工业控制等领域。
总的来说,IGBT的工作原理是通过控制栅极电压来控制集电极和发射极之间的通道导通和截断,从而实现电流的控制和开关。
IGBT具有高电压、高电流和高速开关特性,是电力电子领域中不可或缺的器件之一。
希望通过本文的介绍,能够让大家对IGBT的工作原理有一个更加清晰的认识。
IGBT工作原理引言概述:IGBT是一种广泛应用于电力电子领域的功率半导体器件,具有高效率、高速度和高可靠性等优点。
了解IGBT的工作原理对于电力电子工程师和研究人员来说至关重要。
本文将详细介绍IGBT的工作原理,包括结构、工作方式和应用等方面。
一、IGBT的结构1.1 发射极结构:IGBT的发射极是由N+型硅衬底、N型漏极和P型基极组成的结构。
1.2 栅极结构:IGBT的栅极是由金属层和绝缘层组成的结构,用于控制电流流动。
1.3 集电极结构:IGBT的集电极是由N+型硅衬底和P型漏极组成的结构,用于集中电流输出。
二、IGBT的工作方式2.1 关态:当IGBT的栅极施加正向电压时,电流可以从集电极流向发射极,器件处于导通状态。
2.2 开态:当IGBT的栅极施加负向电压时,电流无法从集电极流向发射极,器件处于关断状态。
2.3 开关速度:IGBT的开关速度取决于栅极电压的变化速度,快速开关速度可以提高器件的效率和性能。
三、IGBT的特点3.1 高效率:IGBT具有低导通压降和低开关损耗,能够提高系统的能效。
3.2 高速度:IGBT的开关速度快,能够实现快速的电流控制和开关操作。
3.3 高可靠性:IGBT具有较高的耐压和耐热性能,能够在恶劣环境下稳定工作。
四、IGBT的应用领域4.1 变频调速:IGBT广泛应用于变频调速系统中,实现机电的精确控制和能量调节。
4.2 逆变器:IGBT可以用于逆变器中,将直流电源转换为交流电源,满足不同电器设备的电源需求。
4.3 电力传输:IGBT可用于电力传输系统中,提高电网的稳定性和效率,实现电力的远距离传输。
五、总结IGBT作为一种重要的功率半导体器件,在电力电子领域具有广泛的应用前景。
了解IGBT的结构、工作方式和特点对于电力电子工程师和研究人员来说至关重要,可以匡助他们设计和优化电力电子系统,提高系统的效率和性能。
希翼本文能够匡助读者更好地理解IGBT的工作原理,为他们在实际应用中提供指导和匡助。
IGBT工作原理IGBT(Insulated Gate Bipolar Transistor)是一种重要的功率半导体器件,广泛应用于高压、高频率和高电流的电力电子系统中。
本文将详细介绍IGBT的工作原理,包括结构、工作过程和特性。
一、结构IGBT由P型衬底、N+型外延区、N型沟道区、P型沟道区和N+型漏极组成。
其中,P型衬底和N+型外延区形成PN结,N型沟道区和P型沟道区形成PNP结,N+型漏极是电流输出端。
二、工作过程1. 关态:当控制端施加正向电压时,PN结正向偏置,PNP结反向偏置。
此时,P型沟道区的空穴和N型沟道区的电子被吸引到PNP结的N型区域,形成导电通道。
电流从漏极流向源极,IGBT处于导通状态。
2. 开态:当控制端施加负向电压时,PN结反向偏置,PNP结正向偏置。
此时,导电通道被截断,电流无法通过,IGBT处于截止状态。
3. 开关过程:IGBT从关态到开态的过程称为开启过程,从开态到关态的过程称为关断过程。
在开启过程中,控制端施加正向电压,PN结逐渐正向偏置,导电通道逐渐形成,电流逐渐增大。
在关断过程中,控制端施加负向电压,PN结逐渐反向偏置,导电通道逐渐截断,电流逐渐减小。
三、特性1. 高电压能力:IGBT具有较高的耐压能力,可以承受较高的电压。
这使得IGBT在高压应用中具有优势,如电力变换器、电力传输系统等。
2. 高频特性:IGBT具有较高的开关速度和频率响应,适合于高频率应用。
这使得IGBT在交流电动机驱动、变频器等领域得到广泛应用。
3. 低开启压降:IGBT的开启压降较小,能够减少功率损耗。
这使得IGBT在低功率应用中具有优势,如电源、逆变器等。
4. 温度特性:IGBT的工作温度范围较广,能够在较高的温度下正常工作。
这使得IGBT在高温环境下的电力电子系统中具有优势。
总结:IGBT是一种重要的功率半导体器件,具有高电压能力、高频特性、低开启压降和良好的温度特性。
它的工作原理基于PN结和PNP结的正向和反向偏置,通过控制端的电压来实现导通和截断。
IGBT 的工作原理和工作特性IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N 一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从 P+基极注入到 N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无 N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT 处于关断状态.在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系.最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT的开关特性是指漏极电流与漏源电压之间的关系。
IGBT 处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。
此时,通态电压Uds(on)可用下式表示Uds(on)=Uj1+Udr+IdRoh (2-14)式中Uj1——JI结的正向电压,其值为0。
7 ~ IV;Udr -—扩展电阻Rdr上的压降;Roh——沟道电阻。
IGBT工作原理和工作特性1. IGBT的基本原理IGBT(Insulated Gate Bipolar Transistor)是一种高压、高速开关设备,结合了MOSFET和双极晶体管(BJT)的特性。
它具有MOSFET的高输入阻抗和BJT的低导通压降。
2. IGBT的结构IGBT由N型衬底、P型衬底和N型增强层组成。
增强层上有一个PN结,形成NPN三极管结构,而P型衬底连接到集电极。
3. IGBT的工作原理当IGBT的栅极电压为零时,栅极-源极结处形成反向偏置,导通区域被截断。
当栅极电压大于阈值电压时,栅极-源极结处形成正向偏置,导通区域开始形成导电通道,电流开始流动。
4. IGBT的工作特性(1)低导通压降:IGBT的导通压降较低,可以减少功耗和热损耗。
(2)高输入阻抗:IGBT的栅极电流非常小,输入阻抗较高,可以减少输入功率和电流。
(3)高开关速度:IGBT的开关速度较快,可以实现高频率开关操作。
(4)大功率处理能力:IGBT能够处理大功率电流和高电压。
(5)可靠性:IGBT具有较高的可靠性和稳定性,适用于各种工业应用。
5. IGBT的应用领域(1)电力电子:IGBT广泛应用于电力变换器、逆变器、交流调速器等领域。
(2)电动车:IGBT用于电动车的电机驱动系统,提供高效率和高性能。
(3)可再生能源:IGBT在太阳能和风能转换系统中用于能量转换和电网连接。
(4)工业自动化:IGBT用于工业机器人、自动化控制系统和电力工具等。
6. IGBT的优势和劣势(1)优势:高压能力、低导通压降、高开关速度、可靠性高、适用于大功率应用。
(2)劣势:对静电放电敏感、温度敏感、需要驱动电路。
7. IGBT的发展趋势(1)高集成度:将多个IGBT芯片集成在一个封装中,提高功率密度和可靠性。
(2)低损耗:减少导通和开关损耗,提高能效。
(3)高温特性:提高IGBT在高温环境下的工作能力。
(4)低成本:降低生产成本,推动IGBT技术的普及和应用。
IGBT工作原理1. 引言IGBT(Insulated Gate Bipolar Transistor)是一种高压、高电流功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,并解释其在电路中的应用。
2. IGBT的结构IGBT由NPN型晶体管和PNP型晶体管组成,中间由绝缘栅层隔开。
NPN型晶体管负责控制电流,PNP型晶体管负责控制电压。
这种结构使得IGBT既具备晶体管的低导通压降特性,又具备MOSFET的高输入阻抗特性。
3. IGBT的工作原理当正向电压施加在IGBT的集电极和发射极之间时,NPN型晶体管的集电结正向偏置,PNP型晶体管的集电结反向偏置。
此时,IGBT处于关断状态,几乎没有漏电流。
当绝缘栅极施加正向电压时,绝缘栅层下的P型区域形成N型沟道,使NPN型晶体管的集电结反向偏置,PNP型晶体管的集电结正向偏置。
这样,IGBT就进入导通状态,电流可以从集电极流向发射极。
4. IGBT的特性4.1 高电压能力:IGBT可以承受较高的电压,通常可达数百伏特至数千伏特。
4.2 高电流能力:IGBT能够承受较大的电流,通常可达几百安培至几千安培。
4.3 快速开关速度:IGBT的绝缘栅极可以控制其导通和关断速度,使其能够快速切换。
4.4 低导通压降:IGBT的导通压降较低,能够减少功率损耗。
4.5 高输入阻抗:IGBT的绝缘栅极具有高输入阻抗,能够降低驱动电路的功耗。
5. IGBT的应用5.1 变频器:IGBT广泛应用于交流电机的变频调速系统中,能够实现电机的高效率运行。
5.2 电力传输:IGBT可用于高压直流输电系统中,提供高效率的电力传输。
5.3 电力电子设备:IGBT可用于电力电子设备的开关电源、逆变器、电流控制器等部分,提高设备的效率和可靠性。
5.4 汽车电子:IGBT可用于电动汽车的电力控制系统中,提供高效率的电力传输和控制。
6. 总结IGBT是一种高压、高电流功率开关器件,具备低导通压降、高输入阻抗等特点。
IGBT的工作原理和工作特性IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT的开关特性是指漏极电流与漏源电压之间的关系。
IGBT 处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。
此时,通态电压Uds(on)可用下式表示:Uds(on)=Uj1+Udr+IdRoh (2-14)式中Uj1——JI结的正向电压,其值为0.7~IV;Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。
IGBT工作原理引言:IGBT(Insulated Gate Bipolar Transistor)是一种功率器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,包括结构、工作过程和特点等方面的内容。
一、结构IGBT由三个主要部分组成:N型沟道区、P型基区和N型漏极区。
其中,N 型沟道区和P型基区构成PN结,而P型基区和N型漏极区构成PNP结。
IGBT的结构类似于MOSFET和普通的MOS结构,但其特殊之处在于P型基区的存在。
二、工作过程1. 关态(开关态):当IGBT的栅极电压为高电平时,栅极和N型沟道区之间形成正向偏置,使得PN结处于导通状态。
此时,电流可以从漏极流向源极,IGBT处于导通状态。
这个过程类似于MOSFET的导通过程。
2. 关断态:当IGBT的栅极电压为低电平时,栅极和N型沟道区之间形成反向偏置,使得PN结处于截止状态。
此时,电流无法从漏极流向源极,IGBT处于截止状态。
这个过程类似于MOSFET的截止过程。
3. 关断过程:当IGBT从导通状态切换到截止状态时,需要通过一定的关断过程来确保电流的截断。
这个过程中,栅极电压逐渐降低,直到PN结完全截止。
三、特点1. 高压能力:IGBT具有较高的耐压能力,可以承受较高的电压。
这使得IGBT成为高压应用领域的理想选择,如电力电子转换器、电动汽车等。
2. 低导通压降:IGBT的导通压降较低,能够减小功率损耗,提高效率。
这使得IGBT在高频应用中具有优势,如变频器、电源等。
3. 高开关速度:IGBT具有较快的开关速度,能够实现快速的开关操作。
这使得IGBT在需要高频率开关的应用中表现出色,如逆变器、交流电机驱动器等。
4. 可靠性高:IGBT的结构设计和材料选择使其具有较高的可靠性和稳定性。
这使得IGBT 在各种恶劣环境下都能正常工作,如高温、高湿度等。
结论:IGBT作为一种重要的功率器件,具有高压能力、低导通压降、高开关速度和高可靠性等优点。
通俗易懂讲解IGBT的工作原理和作用IGBT(Insulated Gate Bipolar Transistor)即绝缘栅双极晶体管,是一种常用的功率半导体器件,具有高电压、高电流和高开关速度的特点。
它广泛应用于交流调速、电源逆变、电机驱动等领域,具有重要的作用。
本文将通俗易懂地介绍IGBT的工作原理和作用。
一、IGBT的工作原理IGBT是由N沟道型MOS(Metal Oxide Semiconductor)场效应晶体管与PNP型双极晶体管组成。
它结合了MOSFET和双极晶体管的优点,在导通时具有较低的导通压降,而在关断时具有较高的击穿电压。
其工作原理如下:1. 导通状态:在IGBT导通状态下,当控制电压Ugs大于门极阈值电压Uth时,N沟道型MOSFET处于导通状态,形成通道,电流可以从集电极到源极流动。
由于N沟道型MOSFET的导通电阻较小,因此导通时的压降很小。
2. 关断状态:当控制电压Ugs小于门极阈值电压Uth时,N沟道型MOSFET无通道,不导电,IGBT进入关断状态。
此时,通过控制电压Uce(集电-发射极电压)可以实现IGBT的关断。
由于PNP型双极晶体管的存在,即使在较高的Uce下,IGBT也能承受较高的电压。
IGBT的工作原理可以用一个自锁开关的例子来解释。
N沟道型MOSFET相当于自锁开关的门锁,控制门锁的状态可以实现导通和关断;PNP型双极晶体管相当于自锁开关的钥匙,即使是在关断状态下,只要插入钥匙(提供较高的Uce),开关仍然可以打开。
二、IGBT的作用IGBT作为一种高性能的功率开关器件,其作用主要体现在以下几个方面:1. 电流调节:IGBT能够调节高电压和高电流,广泛应用于交流调速和电源逆变等领域。
在交流调速中,IGBT可以根据输入信号的变化,控制电机的转速和输出功率。
2. 电源逆变:IGBT可实现DC/AC逆变,将直流电源转换为交流信号,用于交流电源转换、逆变焊机等领域。
I G B T的工作原理和工作特性84658IGBT的工作原理和工作特性IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT的开关特性是指漏极电流与漏源电压之间的关系。
IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。
此时,通态电压Uds(on)可用下式表示:Uds(on)=Uj1+Udr+IdRoh (2-14)式中Uj1——JI结的正向电压,其值为0.7~IV;Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。
通态电流Ids可用下式表示:Ids=(1+Bpnp)Imos (2-15)式中Imos——流过MOSFET的电流。
由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V 的IGBT通态压降为2~3V。
IGBT处于断态时,只有很小的泄漏电流存在。
2.动态特性IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。
td(on)为开通延迟时间,tri为电流上升时间。
实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和。
漏源电压的下降时间由tfe1和tfe2组成,如图2-58所示IGBT 在关断过程中,漏极电流的波形变为两段。
因为 MOSFET 关断后, PNP 晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间, td(off) 为关断延迟时间, trv 为电压 Uds(f) 的上升时间。
实际应用中常常给出的漏极电流的下降时间 Tf 由图 2-59 中的t(f1) 和 t(f2) 两段组成,而漏极电流的关断时间t(off)=td(off)+trv + t(f) ( 2-16 )式中, td(off) 与 trv 之和又称为存储时间。
IGBT的基本结构绝缘栅双极晶体管(IGBT)本质上是一个场效应晶体管,只是在漏极和漏区之间多了一个 P 型层。
根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。
图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。
N+ 区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P型区(包括P+和P一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。
而在漏区另一侧的 P+ 区称为漏注入区(Drain injector ),它是 IGBT特有的功能区,与漏区和亚沟道区一起形成 PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
为了兼顾长期以来人们的习惯,IEC规定:源极引出的电极端子(含电极端)称为发射极端(子),漏极引出的电极端(子)称为集电极端(子)。
这又回到双极晶体管的术语了。
但仅此而已。
IGBT的结构剖面图如图2所示。
它在结构上类似于MOSFET ,其不同点在于IGBT是在N沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN结j1 ,并由此引出漏极、栅极和源极则完全与MOSFET相似。
图1 N沟道IGBT结构图2 IGBT的结构剖面图由图2可以看出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。
图中Rdr是厚基区GTR的扩展电阻。
IGBT是以GTR 为主导件、MOSFET 为驱动件的复合结构。
N沟道IGBT的图形符号有两种,如图4所示。
实际应用时,常使用图2-5所示的符号。
对于P沟道,图形符号中的箭头方向恰好相反,如图4所示。
IGBT 的开通和关断是由栅极电压来控制的。
当栅极加正电压时,MOSFET 内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT导通,此时,从P+区注到N一区进行电导调制,减少N一区的电阻 Rdr值,使高耐压的 IGBT 也具有低的通态压降。
在栅极上加负电压时,MOSFET 内的沟道消失,PNP晶体管的基极电流被切断,IGBT 即关断。
正是由于 IGBT 是在N 沟道 MOSFET 的 N+ 基板上加一层 P+ 基板,形成了四层结构,由PNP-NPN晶体管构成 IGBT 。
但是,NPN晶体管和发射极由于铝电极短路,设计时尽可能使NPN不起作用。
所以说, IGBT 的基本工作与NPN晶体管无关,可以认为是将N 沟道 MOSFET 作为输入极,PNP晶体管作为输出极的单向达林顿管。
采取这样的结构可在 N一层作电导率调制,提高电流密度。
这是因为从 P+ 基板经过 N+ 层向高电阻的 N一层注入少量载流子的结果。
IGBT 的设计是通过 PNP-NPN 晶体管的连接形成晶闸管。
2.IGBT模块的术语及其特性术语说明3.IGBT模块使用上的注意事项1. IGBT模块的选定在使用IGBT模块的场合,选择何种电压,电流规格的IGBT模块,需要做周密的考虑。
a. 电流规格IGBT模块的集电极电流增大时,V CE(-)上升,所产生的额定损耗亦变大。
同时,开关损耗增大,原件发热加剧。
因此,根据额定损耗,开关损耗所产生的热量,控制器件结温(T j)在 150o C以下(通常为安全起见,以125o C以下为宜),请使用这时的集电流以下为宜。
特别是用作高频开关时,由于开关损耗增大,发热也加剧,需十分注意。
一般来说,要将集电极电流的最大值控制在直流额定电流以下使用,从经济角度这是值得推荐的。
b.电压规格IGBT模块的电压规格与所使用装置的输入电源即市电电源电压紧密相关。
其相互关系列于表1。
根据使用目的,并参考本表,请选择相应的元件。
2. 防止静电IGBT的V GE的耐压值为±20V,在IGBT模块上加出了超出耐压值的电压的场合,由于会导致损坏的危险,因而在栅极-发射极之间不能超出耐压值的电压,这点请注意。
在使用装置的场合,如果栅极回路不合适或者栅极回路完全不能工作时(珊极处于开路状态),若在主回路上加上电压,则IGBT 就会损坏,为防止这类损坏情况发生,应在栅极一发射极之间接一只10kΩ左左的电阻为宜。
此外,由于IGBT模块为MOS结构,对于静电就要十分注意。
因此,请注意下面几点:1)在使用模块时,手持分装件时,请勿触摸驱动端子部份。
2)在用导电材料连接驱动端子的模块时,在配线未布好之前,请先不要接上模块。
3)尽量在底板良好接地的情况下操作。
4)当必须要触摸模块端子时,要先将人体或衣服上的静电放电后,再触摸。
5)在焊接作业时,焊机与焊槽之间的漏泄容易引起静电压的产生,为了防止静电的产生,请先将焊机处于良好的接地状态下。
6)装部件的容器,请选用不带静电的容器。
3.并联问题用于大容量逆变器等控制大电流场合使用IGBT模块时,可以使用多个器件并联。
并联时,要使每个器件流过均等的电流是非常重要的,如果一旦电流平衡达到破坏,那么电过于集中的那个器件将可能被损坏。
为使并联时电流能平衡,适当改变器件的特性及接线方法。
例如。
挑选器件的V CE(sat)相同的并联是很重要的。
4.其他注意事项1)保存半导体原件的场所的温度,温度,应保持在常温常湿状态,不应偏离太大。
常温的规定为5-35℃,常湿的规定为45—75%左右。
2)开、关时的浪涌电压等的测定,请在端子处测定。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。
MOSFET由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 高出很多。
IGBT较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,与同一个标准双极器件相比,可支持更高电流密度,并简化 IGBT驱动器的原理图。
1.IGBT的结构与工作原理图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。
N+ 区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。
而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。
IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。
当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。