IGBT 的工作原理和工作特性
- 格式:doc
- 大小:273.00 KB
- 文档页数:10
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种高性能功率半导体器件,常用于控制和调节高电压和高电流的电力电子应用中。
本文将详细介绍IGBT的工作原理及其相关特性。
一、IGBT结构IGBT由三个主要部份组成:N型电流扩散层、P型基区和N型绝缘栅区。
它的结构类似于MOSFET和双极晶体管的结合体,具有MOSFET的高输入阻抗和双极晶体管的低导通压降特性。
二、IGBT工作原理1. 关断状态:当IGBT的栅极电压为0V时,处于关断状态。
此时,N型电流扩散层和N型绝缘栅区之间形成为了反向偏置的PN结,阻挠了电流的流动。
2. 开通状态:当给IGBT的栅极施加正向电压时,即使很小的电压也能引起电流的流动。
在开通状态下,栅极电压控制导通电流的大小。
3. IGBT的导通过程:当栅极电压高于临界电压时,电流开始从N型电流扩散层注入到P型基区,形成NPN型双极晶体管。
由于双极晶体管的放大作用,电流迅速增加。
同时,由于N型绝缘栅区的存在,栅极电压控制了电流的大小。
因此,IGBT具有较低的导通压降。
4. IGBT的关断过程:当栅极电压降低到临界电压以下时,电流开始减小。
在关断过程中,IGBT的关断速度取决于去除电荷的速度。
通常,通过施加负向电压或者短路栅极电压来加快关断速度。
三、IGBT的特性1. 高输入阻抗:由于IGBT的栅极绝缘层,其输入电流极小,因此具有高输入阻抗。
这使得IGBT可以被各种控制电路轻松驱动。
2. 低导通压降:IGBT的导通压降较低,这意味着在导通状态下能够减小功率损耗,提高效率。
3. 大功率承受能力:IGBT能够承受较高的电压和电流,适合于高功率应用,如变频器、电力传输、电动车等。
4. 快速开关速度:IGBT具有较快的开关速度,可以实现高频率的开关操作,适合于需要频繁开关的应用。
5. 温度依赖性:IGBT的导通压降和关断速度受温度影响较大。
简述IGBT的主要特点和工作原理一、简介IGBT,Insulated Gate Bipolar Transistor,是一种复合全控电压驱动功率半导体器件。
由BJT(双极晶体管)和IGFET(绝缘栅场效应晶体管)组成。
IGBT兼有MOSFET 的高输入阻抗和GTR 的低导通压降的优点。
GTR 的饱和电压降低,载流密度大,但驱动电流更大。
MOSFET的驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT结合了以上两种器件的优点,驱动功率小,饱和电压降低。
非常适合用于直流电压600V及以上的变流系统,如交流电机、逆变器、开关电源、照明电路、牵引驱动等领域。
IGBT模块是由IGBT(绝缘栅双极晶体管)和FWD(续流二极管)通过特定的电路桥封装而成的模块化半导体产品。
封装后的IGBT模块直接应用于逆变器、UPS不间断电源等设备。
IGBT模块具有节能、安装维护方便、散热稳定等特点。
一般IGBT也指IGBT模块。
随着节能环保等理念的推进,此类产品将在市场上越来越普遍。
IGBT是能量转换和传输的核心器件,俗称电力电子器件的“CPU”,广泛应用于轨道交通、智能电网、航空航天、电动汽车、新能源设备等领域。
二、IGBT的结构下图显示了一种N 沟道增强型绝缘栅双极晶体管结构。
N+区称为源极区,其上的电极称为源极(即发射极E)。
N基区称为漏区。
器件的控制区为栅极区,其上的电极称为栅极(即栅极G)。
沟道形成在栅区的边界处。
C 极和E 极之间的P 型区域称为子通道区域。
漏极区另一侧的P+ 区称为漏极注入器。
它是IGBT独有的功能区,与漏极区和子沟道区一起构成PNP双极晶体管。
它充当发射极,将空穴注入漏极,进行传导调制,并降低器件的通态电压。
《N沟道增强型绝缘栅双极晶体管》IGBT的开关作用是通过加正栅电压形成沟道,为PNP(原NPN)晶体管提供基极电流,使IGBT导通。
反之,加反向栅压消除沟道,切断基极电流,就会关断IGBT。
IGBT的工作原理和工作特性IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:1.静态IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:1 .静态特性:IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1 、放大区2和击穿特性3部分。
在截止状态下的IGBT ,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
IGBT工作原理IGBT(Insulated Gate Bipolar Transistor)是一种重要的功率半导体器件,广泛应用于高压、高频率和高电流的电力电子系统中。
本文将详细介绍IGBT的工作原理,包括结构、工作过程和特性。
一、结构IGBT由P型衬底、N+型外延区、N型沟道区、P型沟道区和N+型漏极组成。
其中,P型衬底和N+型外延区形成PN结,N型沟道区和P型沟道区形成PNP结,N+型漏极是电流输出端。
二、工作过程1. 关态:当控制端施加正向电压时,PN结正向偏置,PNP结反向偏置。
此时,P型沟道区的空穴和N型沟道区的电子被吸引到PNP结的N型区域,形成导电通道。
电流从漏极流向源极,IGBT处于导通状态。
2. 开态:当控制端施加负向电压时,PN结反向偏置,PNP结正向偏置。
此时,导电通道被截断,电流无法通过,IGBT处于截止状态。
3. 开关过程:IGBT从关态到开态的过程称为开启过程,从开态到关态的过程称为关断过程。
在开启过程中,控制端施加正向电压,PN结逐渐正向偏置,导电通道逐渐形成,电流逐渐增大。
在关断过程中,控制端施加负向电压,PN结逐渐反向偏置,导电通道逐渐截断,电流逐渐减小。
三、特性1. 高电压能力:IGBT具有较高的耐压能力,可以承受较高的电压。
这使得IGBT在高压应用中具有优势,如电力变换器、电力传输系统等。
2. 高频特性:IGBT具有较高的开关速度和频率响应,适合于高频率应用。
这使得IGBT在交流电动机驱动、变频器等领域得到广泛应用。
3. 低开启压降:IGBT的开启压降较小,能够减少功率损耗。
这使得IGBT在低功率应用中具有优势,如电源、逆变器等。
4. 温度特性:IGBT的工作温度范围较广,能够在较高的温度下正常工作。
这使得IGBT在高温环境下的电力电子系统中具有优势。
总结:IGBT是一种重要的功率半导体器件,具有高电压能力、高频特性、低开启压降和良好的温度特性。
它的工作原理基于PN结和PNP结的正向和反向偏置,通过控制端的电压来实现导通和截断。
IGBT 的工作原理和工作特性IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。
IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N 一沟道MOSFET ,所以具有高输入阻抗特性。
当MOSFET 的沟道形成后,从 P+ 基极注入到 N 一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT 在高电压时,也具有低的通态电压。
IGBT 的工作特性包括静态和动态两类:1 .静态特性IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高,Id 越大。
它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。
在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1 结承担。
如果无 N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+ 缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。
它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。
在IGBT 导通后的大部分漏极电流范围内,Id 与Ugs 呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V 左右。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系.IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。
此时,通态电压Uds(on) 可用下式表示Uds(on) =Uj1 +Udr +IdRoh (2 -14 )式中Uj1 ——JI 结的正向电压,其值为0.7 ~IV ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。
IGBT工作原理和工作特性1. IGBT的基本原理IGBT(Insulated Gate Bipolar Transistor)是一种高压、高速开关设备,结合了MOSFET和双极晶体管(BJT)的特性。
它具有MOSFET的高输入阻抗和BJT的低导通压降。
2. IGBT的结构IGBT由N型衬底、P型衬底和N型增强层组成。
增强层上有一个PN结,形成NPN三极管结构,而P型衬底连接到集电极。
3. IGBT的工作原理当IGBT的栅极电压为零时,栅极-源极结处形成反向偏置,导通区域被截断。
当栅极电压大于阈值电压时,栅极-源极结处形成正向偏置,导通区域开始形成导电通道,电流开始流动。
4. IGBT的工作特性(1)低导通压降:IGBT的导通压降较低,可以减少功耗和热损耗。
(2)高输入阻抗:IGBT的栅极电流非常小,输入阻抗较高,可以减少输入功率和电流。
(3)高开关速度:IGBT的开关速度较快,可以实现高频率开关操作。
(4)大功率处理能力:IGBT能够处理大功率电流和高电压。
(5)可靠性:IGBT具有较高的可靠性和稳定性,适用于各种工业应用。
5. IGBT的应用领域(1)电力电子:IGBT广泛应用于电力变换器、逆变器、交流调速器等领域。
(2)电动车:IGBT用于电动车的电机驱动系统,提供高效率和高性能。
(3)可再生能源:IGBT在太阳能和风能转换系统中用于能量转换和电网连接。
(4)工业自动化:IGBT用于工业机器人、自动化控制系统和电力工具等。
6. IGBT的优势和劣势(1)优势:高压能力、低导通压降、高开关速度、可靠性高、适用于大功率应用。
(2)劣势:对静电放电敏感、温度敏感、需要驱动电路。
7. IGBT的发展趋势(1)高集成度:将多个IGBT芯片集成在一个封装中,提高功率密度和可靠性。
(2)低损耗:减少导通和开关损耗,提高能效。
(3)高温特性:提高IGBT在高温环境下的工作能力。
(4)低成本:降低生产成本,推动IGBT技术的普及和应用。
IGBT的工作原理和工作特性igbt的开关作用是通过加正向栅极电压形成沟道,给pnp电晶体提供基极电流,使igbt导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使igbt 关断。
igbt的驱动方法和mosfet基本相同,只需控制输入极n一沟道mosfet,所以具有高输入阻抗特性。
当mosfet的沟道形成后,从p+基极注入到n一层的空穴(少子),对n一层进行电导调製,减小n一层的电阻,使igbt在高电压时,也具有低的通态电压。
igbt的工作特性包括静态和动态两类:1.静态特性igbt的静态特性主要有伏安特性、转移特性和开关特性。
igbt的伏安特性是指以栅源电压ugs为参变数时,漏极电流与栅极电压之间的关係曲线。
输出漏极电流比受栅源电压ugs的控制,ugs越高,id越大。
它与gtr的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的igbt,正向电压由j2结承担,反向电压由j1结承担。
如果无n+缓冲区,则正反向阻断电压可以做到同样水平,加入n+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了igbt的某些应用範围。
igbt的转移特性是指输出漏极电流id与栅源电压ugs之间的关係曲线。
它与mosfet的转移特性相同,当栅源电压小于开启电压ugs(th)时,igbt处于关断状态。
在igbt导通后的大部分漏极电流範围内,id与ugs呈线性关係。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15v左右。
igbt的开关特性是指漏极电流与漏源电压之间的关係。
igbt处于导通态时,由于它的pnp 电晶体为宽基区电晶体,所以其b值极低。
儘管等效电路为达林顿结构,但流过mosfet的电流成为igbt总电流的主要部分。
此时,通态电压uds(on)可用下式表示:uds(on)=uj1+udr+idroh (2-14)式中uj1——ji结的正向电压,其值为~iv;udr——扩充套件电阻rdr上的压降;roh——沟道电阻。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。
IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N 一沟道MOSFET ,所以具有高输入阻抗特性。
当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。
IGBT 的工作特性包括静态和动态两类:1 .静态特性IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高,Id越大。
它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部份。
在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1 结承担。
如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+ 缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。
它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。
在IGBT 导通后的大部份漏极电流范围内,Id 与Ugs 呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值普通取为15V 摆布。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系.IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。
尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部份。
此时,通态电压Uds(on) 可用下式表示Uds(on) =Uj1 +Udr +IdRoh ( 2 -14 )式中Uj1 ——JI 结的正向电压,其值为0.7 ~ IV ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高压、高电流功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,包括结构、工作模式和特性分析。
一、结构:IGBT由PNP型晶体管和NPN型晶体管组成,两个晶体管共享一个N型区域,中间被一个绝缘层隔开。
晶体管的结构使得IGBT既具有MOSFET的高输入电阻特性,又具有Bipolar Transistor的高电流承载能力。
二、工作模式:1. 关断状态:IGBT的控制极(Gate)施加负电压,使得P型区域与N型区域之间形成反向偏置,导致晶体管的PN结截断,IGBT处于关断状态。
2. 开通状态:IGBT的控制极施加正电压,形成正向偏置,使得P型区域与N型区域之间形成导通通道。
此时,通过控制极的电流可以控制IGBT的导通和截断。
三、工作原理:1. 开通过程:当控制极施加正电压时,形成正向偏置,P型区域的空穴和N型区域的电子会相互扩散并重新组合,形成导通通道。
同时,由于控制极的电流非常小,所以可以忽略控制极的电流对导通过程的影响。
因此,IGBT的导通主要由两个PN结之间的电压来决定。
2. 关断过程:当控制极施加负电压时,形成反向偏置,导致PN结截断。
此时,由于控制极的电流非常小,所以可以忽略控制极的电流对截断过程的影响。
因此,IGBT的截断主要由两个PN结之间的电压来决定。
四、特性分析:1. 低开通电压降:IGBT的开通电压降(VCEsat)非常低,通常在1-2V之间。
这意味着在导通状态下,IGBT可以承受较低的功耗。
2. 高电流承载能力:由于IGBT具有双极型晶体管的结构,因此具有较高的电流承载能力。
普通来说,IGBT的电流承载能力可达几百安培至几千安培。
3. 快速开关速度:IGBT的开关速度较快,通常在数十纳秒至几微秒之间。
这使得IGBT在高频率应用中具有优势。
4. 温度敏感性:IGBT的导通电压降和截断电压升会随着温度的变化而变化。
IGBT 得工作原理与工作特性IGBT得开关作用就是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT得驱动方法与MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET得沟道形成后,从P+基极注入到 N一层得空穴(少子),对N一层进行电导调制,减小N一层得电阻,使IGBT在高电压时,也具有低得通态电压。
IGBT得工作特性包括静态与动态两类:1.静态特性IGBT得静态特性主要有伏安特性、转移特性与开关特性。
IGBT得伏安特性就是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间得关系曲线。
输出漏极电流比受栅源电压Ugs得控制, Ugs越高, Id越大。
它与GTR得输出特性相似.也可分为饱与区1、放大区2与击穿特性3部分。
在截止状态下得IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无 N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT得某些应用范围。
IGBT得转移特性就是指输出漏极电流Id与栅源电压Ugs之间得关系曲线、它与MOSFET得转移特性相同,当栅源电压小于开启电压Ugs(th)时, IGBT处于关断状态。
在IGBT导通后得大部分漏极电流范围内, Id与Ugs呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V 左右。
IGBT得开关特性就是指漏极电流与漏源电压之间得关系。
IGBT 处于导通态时,由于它得PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET得电流成为IGBT总电流得主要部分。
此时,通态电压Uds(on)可用下式表示Uds(on)=Uj1+Udr+ IdRoh ( 2—14 )式中Uj1—- JI结得正向电压,其值为0。
IGBT 的工作原理和工作特性
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
IGBT的工作特性包括静态和动态两类:
1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
IGBT的开关特性是指漏极电流与漏源电压之间的关系.IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。
尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。
此时,通态电压Uds(on)可用下式表示
Uds(on)=Uj1+Udr+IdRoh(2-14)
式中Uj1——JI结的正向电压,其值为0.7~IV;
Udr——扩展电阻Rdr上的压降;
Roh——沟道电阻。
通态电流Ids可用下式表示:
Ids=(1+Bpnp)Imos(2-15)
式中Imos——流过MOSFET的电流。
由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT 通态压降为2~3V。
IGBT处于断态时,只有很小的泄漏电流存在。
2.动态特性IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。
td(on)为开通延迟时间,tri为电流上升时间。
实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和。
漏源电压的下降时间由tfe1和tfe2组成,如图2-58所示
IGBT在关断过程中,漏极电流的波形变为两段。
因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。
实际应用中常常给出的漏极电流的下降时间Tf由图2-59中的t(f1)和t(f2)两段组成,而漏极电流的关断时间
t(off)=td(off)+trv十t(f)(2-16)
式中,td(off)与trv之和又称为存储时间。
IGBT 的驱动与保护技术
1.IGBT的驱动条件驱动条件与IGBT的特性密切相关。
设计栅极驱动电路时,应特别注意开通特性、负载短路能力和dUds/dt引起的误触发等问题。
正偏置电压Uge增加,通态电压下降,开通能耗Eon也下降,分别如图2-62a和b所示。
由图中还可看出,若十Uge固定不变时,导通电压将随漏极电流增大而增高,开通损耗将随结温升高而升高。
负偏电压一Uge直接影响IGBT的可靠运行,负偏电压增高时漏极浪涌电流明显下降,对关断能耗无显著影响,-Uge与集电极浪涌电流和关断能耗Eoff的关系分别如图2-63a和b所示。
门极电阻Rg增加,将使IGBT的开通与关断时间增加;因而使开通
与关断能耗均增加。
而门极电阻减少,则又使di/dt增大,可能引
发IGBT误导通,同时Rg上的损耗也有所增加。
具体关系如图2-64。
由上述不难得知:IGBT的特性随门板驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。
但是IGBT所有特性不能同时最佳化。
双极型晶体管的开关特性随基极驱动条件(Ib1,Ib2)而变化。
然而,对于IGBT 来说,正如图2-63和图2-64所示,门极驱动条件仅对其关断特性略有影响。
因此,我们应将更多的注意力放在IGBT的开通、短路负载容量上。
对驱动电路的要求可归纳如下:
l)IGBT与MOSFET都是电压驱动,都具有一个2.5~5V的阈值电压,有一个容性输入阻抗,因此IGBT对栅极电荷非常敏感故驱动电路必须很可靠,要保证有一条低阻抗值的放电回路,即驱动电路与IGBT 的连线要尽量短。
2)用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压Uge,有足够陡的前后沿,使IGBT的开关损耗尽量小。
另外,IGBT开通后,栅极驱动源应能提供足够的功率,使IGBT不退出饱和而损坏。
3)驱动电路要能传递几十kHz的脉冲信号。
4)驱动电平十Uge也必须综合考虑。
+Uge增大时,IGBT通态压降和开通损耗均下降,但负载短路时的Ic增大,IGBT能承受短路电流的时间减小,对其安全不利,因此在有短路过程的设备中Uge应选得小些,一般选12~15V。
5)在关断过程中,为尽快抽取PNP管的存储电荷,须施加一负偏压Uge,但它受IGBT的G、E间最大反向耐压限制,一般取--1v—--10V。
6)在大电感负载下,IGBT 的开关时间不能太短,以限制出di/dt 形成的尖峰电压,确保IGBT 的安全。
7)由于IGBT在电力电子设备中多用于高压场合,故驱动电路与控制电路在电位上应严格隔离。
8)IGBT的栅极驱动电路应尽可能简单实用,最好自身带有对IGBT的保护功能,有较强的抗干扰能力。
IGBT 的擎住效应与安全工作区
擎住效应
在分析擎住效应之前,我们先回顾一下IGBT的工作原理(这里假定不发生擎住效应)。
1.当Uce<0时,J3反偏,类似反偏二极管,IGBT反向阻断;
2.当Uce>0时,在Uc<Uth的情况下,沟道未形成,IGBT正向阻断;在U。
>Uth情况下,栅极的沟道形成,N+区的电子通过沟道进入N一漂移区,漂移到J3结,此时J3结是正偏,也向N一区注入空穴,从而在N一区产生电导调制,使IGBT正向导通。
3.IGBT的关断。
在IGBT处于导通状态时,当栅极电压减至为零,此时Ug=0<Uth,沟道消失,通过沟道的电子电流为零,使Ic有一个突降。
但由于N 一区注入大量电子、空穴对,IC不会立刻为零,而有一个拖尾时间。
IGBT为四层结构,体内存在一个奇生晶体管,其等效电路如图2-60所示。
在V2的基极与发射极之间并有一个扩展电阻Rbr,在此电阻上P型体区的横向空穴会产生一定压降,对J3结来说,相当于一个正偏置电压。
在规定的漏极电流范围内,这个正偏置电压不大,V2不起作用,当Id大到一定程度时,该正偏置电压足以使V2开通,进而使V2和V3处于饱和状态,于是寄生晶体管开通,栅极失去控制作用,这就是所谓的擎住效应.IGBT发生擎住效应后,漏极电流增大,造成过高功耗,导致损坏。
可见,漏极电流有一个临界值Idm。
,当Id>Idm时便会产生擎住效应。
在IGBT关断的动态过程中,假若dUds/dt过高,那么在J2结中引起的位移电流Cj2(dUds/d t)会越大,当该电流流过体区扩展电阻Rbr时,也可产生足以使晶体管V2开通的正向偏置电压,满足寄生晶体管开通擎住的条件,形成动态擎住效应。
使用中必须防止IGBT发生擎住效应,为此可限制Idm值,或者用加大栅极电阻Rg的办法延长IGBT关断时间,以减少d Uds/d t值。
值得指出的是,动态擎住所允许的漏极电流比静态擎住所允许的要小,放生产厂家所规定的)Id值是按动态擎住所允许的最大漏极电流来确定的。
安全工作区
安全工作区(SO A)反映了一个晶体管同时承受一定电压和电流的能力。
IGBT 开通时的正向偏置安全工作区(FBSOA),由电流、电压和功耗三条边界极限包围而成。
最大漏极电流I dm是根据避免动态擎住而设定的,最大漏源电压Udsm 是由IGBT中晶体管V3的击穿电压所确定,最大功耗则是由最高允许结温所决定。
导通时间越长,发热越严重,安全工作区则越窄,如图2-61。
所示。
IGBT的反向偏置安全工作区(R BSO A)如图2-61b所示,它随IGBT关断时的d Uds/d t而改变,d Uds/dt越高,RBSOA越窄。