福建省沙县第六中学七年级数学下册 1.7 整式的除法(第1课时)教案 (新版)北师大版
- 格式:doc
- 大小:108.00 KB
- 文档页数:2
七年级数学下册1.7.1 整式的除法教案1 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册1.7.1整式的除法教案1 (新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册 1.7.1 整式的除法教案1(新版)北师大版的全部内容。
课题:1。
7整式的除法(1)教学目标:1.经历探索单项式除以单项式法则的过程,进一步体会类比方法的作用,发展运算能力.2.会进行简单的单项式除以单项式的运算.3.理解单项式除以单项式的算理,发展有条理的思考及表达能力.ﻭ教学重点与难点:重点:掌握单项式除以单项式的运算法则。
难点:理解和体会单项式除以单项式的法则.课前准备:多媒体课件.教学过程:一、创设情境,导入新课活动内容:尝试完成下面问题。
如图所示,三个大小相同的球恰好放在一个圆柱形盒子里,猜一猜三个球的体积之和占整个盒子容积的几分之几?处理方式:先让学生独立思考、解决,然后学生之间相互讨论交流,教师关注学生的整个过程,尤其是学生的质疑和争论过程,从中发现学生思维进步的火花.设计意图:这是一个实际应用问题,条件比较隐蔽,需要自己寻找已知条件,以及已知条件与所求问题之间的关系,并进行数学表示,我的学生接受知识惯了,所以本题锻炼学生的自主学习的能力的同时, 也锻炼学生读题、审题和寻找条件的耐心和知识的应用能力.二、探究学习,感悟新知活动内容1: 你能计算出)2(624y322x 的值吗?yzx播放视频(单项式除以单项式的引导)1. 观察式子的特征、运算结果:①观察被除式和除式是单项式还是多项式?②你是用约分计算的结果还是用除法是乘法的逆运算计算结果的?③你是如何计算的?说说你的理解和求解过程及心得.2.总结单项式除以单项式的运算方法:总结: .例1:请同学们计算下列各式(1) )3-()4(2222b a b a ÷-(2) )3-()4(22232b a b a ÷-(3) ])32(52[])32(25[223b a c b a +÷+处理方式:在视频引例的的基础上,一部分学生可以正确理解单项式除以单项式的运算法则,这里重要的是学生能理解运算法则及其探索过程,能够用自己的语言叙述如何进行运算,来指导学生的运算.学生尝试完成3个习题,有错误问题可以使学生对法则的理解更深刻.设计意图:本活动的设计意在引导学生通过引例的总结归纳,对单项式除以单项式的运算从感性认识上升到理性认识.先从观察引例入手,体验这些单项式除以单项式的特征, 在自己应用法则的过程中加强对法则的理解.活动内容2:例2:计算:(1) )3(53232y x y x ÷- (2) )5(103234bc a c b a ÷(3) )14()7()2(34232y x xy y x ÷-⋅ (4) 24)2()2(b a b a +÷+处理方式:选取后进生演示自己的求解过程,完成后学生自愿监督修正,让学生尽可能自己发现问题,自己找到自己对法则理解的误区和盲区,其余的每一个学生至少完成一个小题,然后监督同位和展示的答案,共同进步和成长.设计意图:通过例题题让学生自己收获和检查学习情况,并能找自己对单项式除以单项式法则的理解误区和盲区,加深对单项式除以单项式的认识.巩固练习:(1)计算:=-÷232)21(4xy y x .(2) yz x xy 26)(2-=⋅(3) 计算:=÷----382322)2(b a b a .三、拓展解析,应用新知活动内容1:例3:1.(2014黄石)下列计算结果正确的是( )A .y x y x y x 222253- =⋅ B.y x y x y x 5332222 -=⋅-C.xy y x y x 7535223=÷ D .224)2)(2(y x y x y x -=+-- 2.如果523561)24(4y x y x y x b a =÷,那么( ) A.2=a ,3=b B .8=a ,3=bC.3=a ,8=bD.7=a ,8=b处理方式:先给学生2分钟观察收集信息,然后学生把这两道选择题当做解答题书写过程, 学生明确公式中的a 、b 在第(2)题中分别指向等量的谁; 让学生进一步理解并规范单项式的乘法和除法的运算过程的书写(多媒体出示,同时给适当的时间反思体会).巩固训练1:(1)计算:=-÷-22222)23()32(b a bc a . (2)若782334)32()2(b ma b a b a n =-÷-,则=m ;=n .活动内容2:例4:3.树叶上有许多气孔,在阳光下,树叶通过这些气孔一边排出氧气和蒸汽水分,一边吸入二氧化碳.已知一个气孔在一秒钟内能吸进4105.2⨯亿个二氧化碳分子,一个气孔吸进6100.1⨯亿个二氧化碳分子需要 秒.4.一个长方体的长为ab 2,宽为221ab ,体积为435b a ,问ab 5是否为这个长方体的高,请说明理由. 处理方式:让两名学生主动到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.对于第4小题,可展示学生解法的不同思路,拓展学生的思维.巩固训练2:1.(滨州中考)下列各式运算正确的是( )A.222532a a a =+ B.43224)2(b a ab =C .23622a a a =÷, D.532)(a a =2.=⨯-÷⨯)102()104(39 .3.=-÷22232)2()4(xy y x .处理方式:检查学生的理解的误区,可以由一名学生板演,其余学生练习本上完成,然后借助多媒体展示矫正、规范理解.设计意图:活动的设计意在通过一系列的引导性问题,引导学生加深对单项式除以单项式的理解,从而为下一节的多项式除以单项式的学习作铺垫 .四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高1.(2014江西)下列计算正确的是( )A.532a a a =+ B .6326)2(a a -=-C.12)12)(12(2-=-+a a a D.12)2(223-=÷-a a a a2.(2013湖北黄冈)下列计算正确的是( )A.1644x x x =⋅ B.9423)(a a a =⋅C.4232)()(ab ab ab -=-÷ D.1)()(3426=÷a a3.(2012浙江杭州)下列计算正确的是( )A.3532)(q p q p -=- B.ab ab c b a 2)6()12(232=÷C.223)13(3m m m m -=-÷ D.1)4(12-=--x x x x4.若x 为正整数,且52=n x ,则n n x x 4234)2(÷的值为 .5.计算:234312)2(b a b a ÷⋅-的结果是 .处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本29页,习题1。
《1.7整式的除法》教学目标1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式、多项式除以单项式,并且结果都是整式).2、理解整式除法运算的算理,发展有条理的思考及表达能力.教学重点、难点重点是会利用单项式除以单项式法则和多项式除以单项式法则,进行简单的整式除法运算. 难点是全面、准确地理解二个法则.教学过程一、回顾与思考复习整式乘法中单项式乘以单项式、多项式乘以多项式和同底数幂相除法则.二、合作学习,探求新知1、合作学习月球是距离地球最近的天体,它与地球的距离约为3.8×108米,如果宇宙飞船以1.12×104米/秒的速度飞行,到达月球大约需要多少时间?2、探求新知解决上述问题时,你是怎样计算的?由此你能找到计算(3a8)÷(2a4)的方法吗?计算(6a3b4)÷(3a2b)呢?3、议一议:一般地,两个单项式相除,可以转化为系数与系数相除以及同底数幂的相除,例如:= a3-1·b2-2·x= a2x议一议:如何进行单项式除以单项式的运算?法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.三、应用新知,体验成功1、试一试:例1 计算:(1)-a7x4y3÷(-ax4y2)(2)2a2b·(-3b2)÷(4ab3)(3)(2a+b)4÷(2a+b)22、辨一辨:(1)(12a3b3c)÷(6ab2)=2ab(2)(p5q4)÷(2p3q)=2p2q33、练一练:计算与填空①(10ab3)÷(5b2)= ②3a2÷(6a6)·(-2a4)=③()·3ab2=-9ab5④(-12a3bc)÷()=4a2b四、探究延伸,再会新知1、议一议从上述第2、3题的计算中,你能归纳出多项式除以单项式的运算方法吗?法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 即:(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)2、试一试例2 计算:(1)(14a3-7a2)÷(7a)(2)(15x3y5-10x4y4-20x3y2)÷(-5x3y2)3、练一练(1)辨别正误:①(am+bm+cm2)÷m=a+b+c②(2x-4y+3)÷2=x-2y+3(2)计算式填空①(15x2y-10xy2)÷(5xy)②(4c3d2-6c2d3)÷(-3c2d)③ [3a2-()]÷(-a)=-3a+2b④()·(-2y)=4x2y-6xy2五、归纳小结、充实结构1、单项式相除(1)系数相除(2)同底数幂相除(3)只在被除式里的幂不变2、多项式除以多项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.六、布置作业。
1.7整式的除法(一)课时课题第一章第7节整式的除法(一)课型新授课授课时间教学目标1.知识与技能目标:①会进行单项式除以单项式的整式除法运算②理解单项式除以单项式的运算算理,发展学生有条的思考及表达能力2.过程与方法目标:通过观察、归纳等训练,培养学生能力3.情感态度与价值观目标:培养学生耐心细致的良好品质教法及学法指导学生已有整数除法,同底数幂的除法,单项式乘以单项式的法则等知识储备。
在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力。
本课让学生经历观察、操作、推理、想象等探索过程,能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
发展学生的合作交流能力、推理能力和有条理的表达能力。
教学过程:一、复习就知、引入新课 1.口答: (5x)·(2xy 2 )(-3mn)·(4n 2 )生:10x 2y2-12m n 3师:我们已经探讨过同底数幂的除法,请你舒述同底数幂的除法法则,并用式子表示. 学生做完后分别找学生叙述 师:单项式乘单项式法则是什么?生:单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.设计意图:同底数幂的除法是学习整式除法的理论基础,只有熟练掌握同底数幂的除法,才能更好的进行整式除法的学习。
此外,复习单项式乘以单项式法则,是为了对比学习单项式除以单项式法则,比较其相似与不同,并能将前后知识融为一体,使之形成一定的知识体系。
二.提出问题、探究交流师:你能计算下列各题吗?如果能,说说你的理由。
(给学生五分钟时间)三位同学上黑板,其余同学在下面探讨,然后同位交流.生1:除法是除法的逆运算,想到2x ×?=y x 5,只有y x 3,所以(1)答案是y x 3,同理其余两题答案分别是:4n 和bc a 231.生2:利用类似于分数约分的方法:(1)y x 5÷2x =25x yx=y x 3)()()(b ac b a n m n m x y x 224222253)()3()2()8()2(1÷÷÷(2)228n m ÷n m22=n m n m 22228=4n (3)c b a 24÷b a 23=b a cb a 2243=bc a 231 师:请你类比单项式乘以单项式的法则,总结单项式除以单项式法则,并与同伴交流. 生:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式.师:按照总结的单项式除以单项式法则,我们一起完成上面的三个小题.请同学们说,老师书写解题过程:解:(1)y x 5÷2x =y x25-=y x 3(2)228n m ÷n m 22=(8÷2)1222--n m=4m 0n 1=4n (3)c b a 24÷b a 23 =(1÷3)c b a1224--=bc a 231师:经历上面问题的处理,尝试完成下表:单项式相乘 单项式相除 第一步 系数相乘 系数相除 第二步同底数幂相乘同底数幂相除完全由学生自己总结归纳,对所学习过的知识分析汇总,并让学生完 成填表工作.设计意图:让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;通过对比使学生自然得到单项式除以单项式法则,观察其相似与不同,便于学生更好地掌握整式除法运算。
课题:整式的除法教学目标:1.理解整式除法运算的算理,会进行简单的整式除法运算;2.掌握多项式除以单项式的运算法则,体会数学在生活中的广泛应用;3.经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.教学重、难点:重点:多项式除以单项式的运算法则的探索及其应用.难点:探索多项式除以单项式的运算法则的过程.教法及学法指导:在教学过程中,注重体现教师的导向作用和学生的主体地位,本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中、在掌握知识同时、发展智力、受到教育.课前准备:制作课件教学过程:一、情境引入,复习回顾活动内容1:(多媒体出示图片)同学们,我这儿有一道题,看看你能不能利用现有的知识解决呢?X大爷家有一块长方形的田地,它的面积是6a2+2a,宽为2a,聪明的你能帮X大爷求出田地的长吗?处理方式:学生看图读题后回答并说明理由:长方形的面积=长×宽,从而得出已知面积和宽,则田地的长=(6a2+2a)÷(2a).教师板书:(6a2+2a)÷(2a)然后教师手指算式追问:这是何种类型的运算?我们以前学过吗?学生通过观察、思考,容易得出“多项式除以单项式”,教师顺势板书课题:(板书:整式的除法---多项式除以单项式)【设计意图】从学生熟悉的生活情景出发,找准新知识的起点,提出疑问,激发学生的学习兴趣和求知欲,不仅使学生快速的进入学习状态,同时又让学生觉得数学源于生活又应用于生活,使学生在不知不觉中感受学习数学的乐趣.活动内容2:多项式如何除以单项式是我们这节课要探索的内容,在探究它之前,让我们先来解决下面的问题.计算下列题目.(1)x 11÷x 6= ; (2) 12a 3b 2÷(3ab 2)= ;处理方式:让学生独立思考,教师巡视,帮助鼓励困难学生完成任务.学生完成后,找学生口头回答,(1)x 5(2) 4a 2 c ;并采取追问方式,学生口答理由,教师根据学生的回答利用多媒体出示理由依据.(1)x 11÷x6 =x11-6(同底数幂相除,底数不变,指数相减.) =x 5(2) 12a 3b 2c ÷(3ab 2)=(12÷3)( a 3÷a)(b 2÷ b 2)c (单项式除法法则)=4a 2 c【设计意图】:同底数幂的除法与单项式除法是学习多项式除以单项式的基础,只有熟练掌握同底数幂的除法与单项式除法,才能正确的进行多项式除以单项式的运算,为学习新知识打基础.二、探究新知,合作交流活动内容:多项式除以单项式的法则的探究问题1:你能计算下列各题吗?如果能,说说你的理由.(1)(ad +bd )÷d=(2)(a 2b +3ab )÷a=(3)(xy 3-2xy )÷(xy )=处理方式:让学生自己先试着做一做,教师巡视,寻找正确的答案准备展示交流.对于第(1)题学生容易得出结果.教师及时追问:“你是如何得到的?”:即由(a +b )·d = ad +bd 得到(ad +bd )÷d= a +b ; 方法 2. 类比有理数的除法法则进行计算: (ad +bd )÷d =(ad +bd ) ·d1=a +b.然后学生根据第(1)题的经验容易解决第(2)(3)题: 方法1. (2) ∵ (ab +3b )·a =a 2b +3ab ∴ (a 2b +3ab )÷a =ab +3b ; (3) ∵ (y 2-2)·xy =xy 3-2xy ∴ (xy 3-2xy )÷(xy )=y 2-2方法 2.(2)(a 2b +3ab )÷a =(a 2b +3ab )a1=ab +3b ; (3)(xy 3-2xy ) ÷(xy )=(xy 3-2xy ) ·xy1=y 2-2.学生回答时教师只把最后结果及时板书在黑板上.【设计意图】通过从学生已有的认知角度出发,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,有成功的体验,要充分发散学生的思维,敢于质疑,培养良好的学习习惯.问题2:观察等式:(1)(ad +bd )÷d= a +b(2)(a 2b +3ab )÷a =ab +3b(3)(xy 3-2xy )÷(xy )=y 2-2你发现了什么?处理方式:1.学生观察思考并举手回答. 学生间互相补充能够解决.如果有困难,教师可适当点拨:被除式中的每一项与商中的每一项有什么对应关系?学生再观察思考,就得出规律.学生回答时,教师注意学生语言表达的规X 性.2.教师总结并出示多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.然后追问“用字母如何表示这个法则”学生思考回答并互相补充得出:(a +b+c )÷m = a ÷m + b ÷m + c ÷m【设计意图】通过让学生经历观察、计算、推理、想象等探索过程,获得数学活动的经验;发散学生思维,让学生尽可能用多种方法来说明自己计算的正确性,培养学生合情说理的能力;并在这个过程中,培养学生总结归纳知识的能力. 发展学生的逻辑推理能力.三、典例分析,应用新知活动内容1:运用多项式除以单项式法则解决问题(例题分析)例2:计算:(1)(6ab +8b )÷2b (2)(27a 3-15a 2+6a )÷3a(3)(9x 2y -6xy 2)÷(3xy )(4)(3x 2y-xy 2+21xy )÷(-21xy ) 处理方式:先给学生1分钟时间观察思考,要求学生说出解决的方法及依据,师生先合作完成第(1)题:学生口述,教师板书,并及时强调过程的规X 性,其余3题学生在练习本上独立完成,然后共同评价.最后教师追问:“ 结合本例题,你认为在计算时,把多项式除以单项式转化成哪个已学知识点?”学生通过观察计算过程,互相补充,共同解决教师的追问.学生回答时,教师及时利用多媒体出示:2.教师总结强调:(多媒体出示)在计算中为保证计算的正确性应该注意:(1)不要漏项,(2)注意符号,(3)注意运算顺序,(4)用互逆运算进行检查. 下附答案解:(1)(6ab +8b )÷(2b )=(6ab )÷(2b )+ (8b )÷(2b ) =3a +4(2)(27a 3-15a 2+6a )÷(3a )=(27a 3)÷(3a )+(-15a 2)÷(3a )+(6a )÷(3a )=9a 2-5a +2(3)(9x 2y -6xy 2)÷(3xy )=(9x 2y )÷(3xy )-(6xy 2)÷(3xy )=3x -2y(4)(3x 2y-xy 2+21xy )÷(-21xy ) =(3x 2y)÷(-21xy )-(xy 2)÷(-21xy )+(21xy )÷(-21xy )= -6x +2y -1 巩固训练:大家法则掌握的很好,我希望我们小组内的每一个成员都能做的更好,现在我们有几道小题检验大家的掌握情况,我希望大家能独立完成:1.想一想,下列计算正确吗?(1)(3x 2y -6xy )÷(-6xyx ( )(2)(5a 3b -10a 2b 2-15ab 3) ÷(-5ab )=a 2+2ab +3b 2 ( )(3)(2x 2y -4xy 2+6y 3) ÷( -21y )= -x 2+2xy -3y 2 ( ) 2. 计算(课本31页随堂练习)(1)(3xy +y )÷y (2)(ma +mb +mc ) ÷m(3)(6c 2d -c 3d 3) ÷(-2c 2d ) (4)(4x 2y +3xy 2) ÷(7xy )处理方式:学生独立思考,再开展小组交流,在练习本上计算,第1题由学生口答,并能说出题目错误的原因,其中常见的错误教师应在点评中给学生指出,避免以后出现类似的错误. 如易错点:1.(1)中丢项,被除式有二项,商式只有一项,丢了最后一项1;正确答案为:x +1;因此,计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除而言,不减项;“消掉”对加减法而言,减项.1.(2)中是符号上错误,两数相除的符号是“同号得正,异号得负”,商式第一项的符号为“-” 正确答案为:-a 2+2ab +3b 2;1.(3)中是系数上的错误,当除数是分数时,除以一个数等于乘以这个数的倒数,因此,正确答案为: -4x 2+8xy -12y 2第2题由做的好的小组找4名学生演板,其他学生在练习本上完成.做完后小组之间开展互评,正误怎样?教师巡视,适时点拨.学生完成后及时点评,借助投影仪展示学生出现的问题进行矫正.第1题教师和学生共同矫正,第2题找同学纠正,并板演正确过程.对于第3、4题教师请男女两个同学比赛进行演板,师给与评价.解:(1)(3xy +y )÷y = 3xy ÷y + y ÷y =3x +1(2)(ma +mb +mc ) ÷m = ma ÷m +mb ÷m +mc ÷m = a +b +c(3)(6c 2d -c 3d 3)÷(-2c 2d ) = 6c 2d ÷(-2c 2d ) -c 3d 3÷(-2c 2d ) = -3+21cd 2 (4)(4x 2y +3xy 2) ÷(7xy ) = 4x 2y ÷(7xy )+3xy 2÷(7xy ) =74x +73y 【设计意图】:(1)通过学习例2和巩固训练第2题,主要巩固多项式除以单项式法则,提高学生的计算能力,进一步熟悉法则.(2)通过做巩固训练第1题判断并能说出题目错误的原因,让学生知道易错点,避免以后出现类似的错误, 强化本节课的重点,突破难点.四﹒学以致用,巩固提高活动内容:多项式除以单项式的法则的应用师:大家刚才的表现很好,我们刚才计算是很基础的,现在我们再看上课前那道题目,你会了吗?看哪个小组完成的最快、正确.1. X 大爷家有一块长方形的田地,它的面积是6a 2+2a ,宽为2a ,聪明的你能帮X 大爷求出田地的长吗?处理方式:小组交流后在练习本上写出过程,表现最好的小组展示过程,并说出理由.解: (6a 2+2a )÷(2a)=6a 2÷(2a)+2a ÷(2a)=3a+1所以长方形的长为(3a+1).巩固训练:1.小明在爬一小山时,第一阶段的平均速度为v ,所用时间为t 1;第二阶段的平均速度为21v ,所用时间为t 2.下山时,小明的平均速度保持为4 v .已知小明上山的路程和下山的路程是相同的,问小明下山用了多长时间?处理方式:学生读题,此题是行程问题,速度路程时间 ,根据公式,上山路程=下山路程= vt 1+21v t 2,然后求下山的时间=(vt 1+21v t 2)÷(4v )= vt 1 ÷( 4v )+ 21v t 2÷( 4v )=41t 1+81t 2= 8212t t +,最后由小组交流后在练习本上写出过程,表现最好的小组展示过程. 【设计意图】:通过完成两题,进一步巩固落实多项式除以单项式运算法则,只有熟练掌握同底数幂的除法与单项式除法,才能正确的进行多项式除以单项式的运算.同时,情景问题的处理,一方面解决学生上课初始的疑问,另一方面,利用多项式除以单项式解决生活中的应用问题,有助于提高学生分析问题、解决问题的能力.五﹒回顾反思,提炼升华这节课我们都学习了哪些内容?学生畅谈自己的收获!多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.2.多项式除以单项式的运算思路是什么?先将多项式除以单项式转化为单项式除以单项式;然后又转化为同底数幂相除.3.计算时需注意:(1)不要漏项,(2)注意符号,(3)注意运算顺序,(4)用互逆运算进行检查.【设计意图】:师生交流、归纳小结的目的是让学生表述自己的收获,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识,明确学习的方向.六﹒达标检测,反馈提高通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成达标检测题.(同时多媒体出示)A 组:1、填空:(1) (35a 3+28a 2+7a )÷(7a )= ;(2) 若kab a +23除以a 等于b a 43+,则k =.2、选择:〔(a 2)4+a 3a -(ab )2〕÷a = ( ) A .a 9+a 5-a 3b 2B .a 7+a 3-ab 2C .a 9+a 4-a 2b 2D .a 9+a 2-a 2b 23、计算:(1)(3x 3y -18x 2y 2+x 2y )÷(-6x 2y ); (2)〔(xy +2)(xy -2)-2x 2y 2+4〕÷(xy ). B 组:1.已知一个三角形的面积是(4a 3b -6a 2b 2+12ab 3),一边长为4ab ,求该边上的高.处理方式:在练习本上自主完成,教师认真巡查.对于必做题学生完成后教师出示答案,学生互换批改,指导学生校对,并统计学生答题情况,学生根据答案进行纠错.附答案:A 组:1.(1)5a 2+4a +1 (2)4 2.B B 组:1.2a 2-3ab+6b 2 【设计意图】:要求学生在5分钟内完成,规定时间和内容,可以了解学生对本节课所学习内容的掌握情况,及时发现个别学生存在的不足,以便督促学生及时纠正错误,端正学习态度,提高数学公式的应用能力.促进对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据.七﹒布置作业,巩固提高A 组:课本31页 习题4知识技能1和本节助学内容.B 组:(选做题)已知一个多项式除以-2a ,小雪误当成了乘法计算,结果得到4a 3-12a 2,则正确的结果应该是多少?【设计意图】:落实本节课所学习的知识内容,提高学生的计算能力和利用数学知识解决问题的能力.结束语:数学与我们的生活有着密切的联系,希望同学们能留心身边的数学问题,做生活的有心人.这节课上,很多同学都展示了自己在数学方面的才华,我相信,明日的陈景润、华罗庚就会在我们班诞生,同学们努力吧!八﹒板书设计()()xy y x --+-2613211:3。
七年级数学§1.7整式的除法 班级 姓名教学目标:1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算; 2、理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。
会多项式除以单项式 教学方法:探索讨论、归纳总结。
填空:1、=÷x x 4 2、=÷-1n n a a 3、36x x =÷教学过程:一、 探索练习,计算下列各题,并说明你的理由。
(1)()25x y x ÷ (2)()()n m n m 22228÷ (3)()()b ac b a 2243÷提醒:可以用类似于分数约分的方法来计算。
讨论:通过上面的计算,该如何进行单项式除以单项式的运算?★ 单项式除以单项式法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
★ 二、 例题讲解:1、计算(1)()2232353y x y x ÷⎪⎭⎫ ⎝⎛- (2)()()bc a c b a 2234510÷(3)()()b a b a +÷+223做巩固练习1。
2、月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 三.巩固练习:1、计算:(1)()z y x z y x 22243412-÷- (2)c a c b a 346241÷-(3) ()123182++÷n n m m (4)()()35316b a b a -÷-2、计算:(1)()b a b a 32383÷⋅ (2)()()⎪⎭⎫⎝⎛-⋅÷2332343228bc a b a c b a 小 结:弄清单项式除法的含义,会进行单项式除法运算。
1.7.1整式的除法教学目标:1.经历探索单项式除以单项式的运算法则的过程,会进行单项式与单项式的除法运算.2.理解单项式除以单项式的除法运算算理,发展有条理的思考及表达能力.教学重点与难点:重点:单项式除以单项式的运算法则及其应用.难点:单项式除以单项式的运算法则的探索过程.课前准备:多媒体课件.教学过程:一、创设情境,导入新课活动内容:我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快. 科学家们发现,光在空气中的传播速度约为3×108m/s,而声音在空气中的传播速度约为3×102m/s,你能知道光的传播速度是声音的多少倍吗?处理方式:要求学生在练习本上列出算式,并写出计算过程. 根据题意可得3×108÷3×102,在计算时学生采用的方法可能是多样的,即可利用(3÷3)×(108÷102)=106计算,也可写出分数的形式,利用约分来计算,又可利用乘除法互为逆运算来求解. 此时可组织学生讨论交流,比较解题方法的异同,只要学生能说出理由即可.设计意图:创设学生熟悉的“声音与闪电”问题,并通过一题多解可有效地激发学生的学习兴趣和求知欲望,调动学生的学习积极性,使他们进入积极思维状态,有助于理解所要学习的新知识.二、探究学习,感悟新知活动内容1:(多媒体出示:自学课本P28,时间7分钟,完成下列问题)1.计算下列各题:(1)x5y÷x2;(2)8m2n2÷2m2n;(3)a4b2c÷3a2b.2.结合题目说说如何进行单项式除以单项式的计算?你能用自己的语言有条理地描述单项式除以单项式法则吗?处理方式:让学生先自学,然后思考,再交流不同的解法. 学生的解题方法不惟一,常见的有两种:①利用乘法与除法互为逆运算计算,②利用类似分数约分的方法计算. 两种方法都应给予肯定,其实质是相同的,但鼓励学生利用第①种方法. 例如,根据单项式乘以单项式法则,欲求8m2n2÷2m2n的值,可以想象2m2n·______= 8m2n2,由于8÷2=4,m2÷m2=1,n2÷n=n . 即2m2n·__4n _=8m2n2,所以8m2n2÷2m2n =4n ,最后让学生总结出单项式除以单项式法则,教师板书.设计意图:结合实例的计算过程,让学生明确单项式相除,可以分为系数、同底数幂、只在被除式里含有的字母三部分运算. 即把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式. 实际上单项式相除是在同底数幂的基础上进行的.活动内容2:(多媒体出示)1.计算下列各题:(1);(2)-16a5bc÷a2b.2.比较“单项式乘以单项式”法则和“单项式除以单项式”法则.处理方式:先让学生到黑板板演两个小题,然后结合题目来观察、思考、交流,并回答问题;在学生口述过程中,若学生回答的不完整,可由其他同学补充,或者由教师进行有针对性的提问,如①系数如何计算?②同底数幂如何计算?③单独出现的幂如何处理?设计意图:通过对比单项式的乘法法则和单项式的除法法则,寻求其异同点,便于学生熟练掌握单项式的除法法则,并将本章的前后知识有机地联系起来,使之形成一个完整的知识网络.活动内容3:利用单项式的除法解决实际问题(多媒体出示)如图所示,三个大小相同的球恰好放在一个圆柱形的盒子里,三个球的体积之和占整个盒子容积的几分之几?处理方式:先让学生写出球的体积公式和圆柱的体积公式,指导学生认真审题;再以小组为单位,自主解决问题,对学习困难的小组适时点拨,让其发现球的直径与圆柱的高之间存在的数量关系;最后多媒体展示解题过程,本题的解法不惟一,常见的有以下两种:解法1:设球的半径为r,则圆柱形的盒子高为6r.根据题意,得3·÷(·6r)=÷6=.因此,三个球的体积之和占整个盒子容积的.解法2:设球的半径为r.根据题意得÷(·2r)=÷2=.由于一个球的体积占盒子容积的三分之一的比例,与三个球的体积占整个盒子容积的比例是一样的. 因此,三个球的体积之和占整个盒子容积的.设计意图:设计本题的目的仍然是让学生熟练掌握单项式除以单项式法则,由于本题是一个实际应用问题,条件较隐蔽,需要自己挖掘已知条件与所求问题之间的关系,因此,小组合作学习就成了解决本题的一条有效途径.三、例题解析,应用新知活动内容1:单项式除法法则不仅适用于两个单项式相除,还适用于三个及以上单项式相除,其指数不仅可以是数字,还可以是字母(多媒体出示).例1:计算下列各题:(1)3÷()(2)16a7b5c2÷(-4a3b2)÷(2abc)处理方式:让两名学生到黑板板演解题步骤,其余学生在练习本上做题,教师边巡视边用红笔批改. 多媒体展示学生的解题过程,并让其他学生订正. 学生解题后反思得:第(1)题指数是“字母”与指数是“数字”其解题方法是一样的,仍是直接利用法则计算,其结果为;第(2)题既可从前向后依次计算,亦可“整体”计算,即原式=[16÷(-4)÷2](a7÷a3÷a)(b5÷b2÷b) (c2÷c)=-2a3b2c.设计意图:先由学生板书,其余学生对板书步骤进行观察、交流,然后在练习本上互评,让学生在错误中成长,这样的体验会让学生印象更深些,认识也会更全面些.最后让学生感悟本例题是用来说明什么问题的.变式训练:(多媒体展示)1.若÷,则2m÷5n的值为________.2.写出一个单项式除以单项式的算式,使其结果为2x2y,你写出的算式为_________.处理方式:对于变式1,让学生思考两式在相除时,其系数、相同字母的指数是如何变化的?对于变式2,旨在培养学生的发散思维能力,其答案不惟一,只要结果正确即可,可利用投影多展示一些学生的算式,并借助投影对学生出现的问题进行矫正. 学生做题时,教师巡视,发现问题及时点拨.设计意图:通过变式训练,开阔了学生的视野,提升了学生的能力,使学生对单项式的除法法则有了更明确的认识,并能多角度地审视同一个知识点. 在学习活动中,学生获得了成功的体验,增强了自信.活动内容2:我们已经学习了积的乘方及单项式的乘、除法法则,那么如何计算一些整式的“混合”计算题呢?(多媒体展示)例2 计算下列各题:(1)(2x2y)3·(-7xy2)÷(-14x2y3)(2)[2(x+y)2·(x+y)3]÷4(x+y)2处理方式:先让学生回答在“混合”运算中,其运算顺序是什么?完成后,让学生进行纠错、评价. 对于出现的问题及时强调,如:符号问题,指数的变化等问题;最后多媒体展示解题过程.=4x5y2.=2(x+y)3.设计意图:在问题(1)中,让学生明确类比“数”的混合运算,来化简“式”的混合运算;在问题(2)中,让学生明确(x+y)要当作一个“整体”来参与计算,即底数可以为多项式,不需要把(x+y)2和(x+y)3计算出来. 本例较好地培养了学生的类比思想和整体思想.变式训练:(多媒体展示)1.已知(a m b n)3÷(ab2)2=a4b5,那么m、n的值分别为().A.m=2,n=7 B.m=3,n=2C.m=2,n=3 D.m=4,n=32.计算:2a4b3+(4a3b2)2÷2a2b的结果是____________.处理方式:先让学生尝试求解,然后以小组为单位讨论交流、回答,要求学生先说每题的算理,再说结论,教师要适时总结. 在问题(1)中,先计算出等式的左边,把得到的单项式与右边的单项式比较,利用相同字母的指数相同,即可求出,的值;在问题(2)中,仍然要注意运算顺序,先算乘方,再算除法,最后再合并同类项.设计意图:变式训练由易到难,循序渐进,较好地培养了学生的分析能力和运算能力,同时也能激发学生学习的积极性和主动性,满足学生的表现欲和探究欲.四、回顾反思,提炼升华师:在本节课的学习过程中,你有哪些收获?有何感想?学会了哪些方法?还有什么疑问?先想一想,请与同学交流.处理方式:学生畅谈自己的收获,教师强调注意事项!设计意图:鼓励学生谈收获,让学生及时地反思总结,评价自己的学习表现,可以培养学生的概括能力和语言表达能力,有利于学生看到自己的优点和不足,以及今后改正的方向,同时也有助于学习习惯的培养.五、达标检测,反馈提高师:通过本节课的学习,相信同学们已经理解了单项式除以单项式法则了,为了检查同学们的掌握情况,请完成导学案中的达标检测题.(同时多媒体出示)A组:1.计算-8a6b3÷2a3b2的结果为().A.4a3b B.-4a2b2 C.-4a3b D.2a2b2 2.李密在下面的计算中只做对了一道题,他做对的题目是().A.÷= B.÷=C.÷= D.÷=3.一个单项式乘以的结果是9x3y2z,则这个单项式是__________.4.计算下列各题:(1)(4ab2)3÷(-2ab2)2(2)6(x+y)5÷3(x+y)3(3)3(xy)2(-x2y)÷(-x3y)B组:1.一个长方体的长为2mn,宽为mn2,体积为5m4n 4,则该长方体的高为_______.2.贝贝在进行两个单项式的除法时,不小心把除以2a2b2错抄成乘以2a2b2,结果得到-8a5b4c2,则其正确结果为___________.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况,学生根据答案进行纠错,并进行“兵教兵”和“兵帮兵”活动.设计意图:通过检测纠错,有针对性地对所学知识进行巩固、落实,对学生存在的问题及时反馈,然后根据学生的掌握的情况,有针对性地进行点拨. 对于测试完成较好的学生应及时给予激励性的表扬,对于完成不好的学生应及时帮扶或课后辅导.六、布置作业,课堂延伸必做题:课本29页习题1.13 第1题、第2题、第3题.选做题:课本30页习题1.13 第5题.设计意图:分层作业的设置,为学生搭建不同高度的学习平台,以满足不同层次学生学习数学的需要,有利于个性化巩固提高的要求. 让每个学生都有成就感,增强了学生学习数学的信心,真正做到面向全体学生.结束语:师:本节课我们主要探索了单项式除以单项式法则,要从三个方面来识记它. 整式的除法是整式的运算之一,具体有单项式除以单项式和多项式除以单项式两种运算,充分理解并熟练掌握单项式的除法法则是下节课学习多项式除以单项式法则的基础和关键.板书设计:。
北师大版数学七年级下册1.7《整式的除法》教案1一. 教材分析《整式的除法》是北师大版数学七年级下册第1章第7节的内容。
本节课主要介绍整式除法的基本概念和运算方法,包括单项式除以单项式、多项式除以单项式和多项式除以多项式的运算规则。
通过学习本节课,学生能够掌握整式除法的基本运算方法,并能够运用整式除法解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了整式的加减法和乘法运算,具备一定的代数基础。
但是,对于整式除法这一概念,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对于除法运算在代数中的应用有一定的疑惑,需要教师进行引导和解释。
三. 教学目标1.知识与技能:学生能够理解整式除法的基本概念,掌握整式除法的运算方法,能够熟练地进行整式除法的计算。
2.过程与方法:通过实例分析和练习,学生能够运用整式除法解决实际问题,提高解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂讨论和练习,培养合作意识和解决问题的能力。
四. 教学重难点1.重点:整式除法的基本概念和运算方法。
2.难点:整式除法在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例和实际问题,激发学生的学习兴趣,引导学生主动参与课堂讨论和练习。
2.引导发现法:教师引导学生发现整式除法的运算规则,培养学生的观察和思考能力。
3.练习法:通过大量的练习,巩固学生的知识和技能。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示整式除法的运算规则和实例。
2.练习题:准备一些练习题,用于学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式除法的概念,例如:“已知两个多项式的乘积是2x^3 - 3x^2 + 2x - 1,其中一个多项式是x - 1,求另一个多项式。
”2.呈现(15分钟)教师引导学生观察和分析问题,引导学生发现整式除法的运算规则。
通过PPT展示整式除法的运算步骤和实例。
北师大版七下数学《1.7整式的除法(1)》教案一. 教材分析北师大版七下数学《1.7整式的除法(1)》这一节主要介绍了整式除法的基本概念和除法法则。
通过本节课的学习,学生能够掌握整式除法的基本运算方法,并能够运用除法法则进行简单的整式除法运算。
本节课的内容是整个初中数学的重要基础,对于学生后续学习代数式求值、解方程等知识点具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了整式的加减乘法运算,对于代数式的概念有一定的了解。
但学生在进行整式除法运算时,可能会遇到符号判断和运算顺序等问题。
因此,在教学过程中,教师需要帮助学生巩固已有的知识,引导学生掌握整式除法的基本法则,并能够灵活运用。
三. 教学目标1.知识与技能目标:学生能够理解整式除法的基本概念,掌握整式除法的基本运算方法,能够进行简单的整式除法运算。
2.过程与方法目标:通过观察、操作、交流等活动,学生能够培养运算能力,提高解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,克服困难,体验成功的喜悦,培养对数学的兴趣。
四. 教学重难点1.教学重点:整式除法的基本概念和除法法则。
2.教学难点:整式除法运算的符号判断和运算顺序。
五. 教学方法1.情境教学法:通过生活实例引入整式除法,激发学生的学习兴趣。
2.引导发现法:教师引导学生发现整式除法的运算规律,培养学生的自主学习能力。
3.合作学习法:学生分组进行讨论和实践,共同完成任务,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示整式除法的运算过程和实例。
2.练习题:准备一些整式除法的练习题,用于课堂练习和巩固知识点。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入整式除法,如计算“已知一个数的平方是36,求这个数。
”引导学生思考如何进行计算。
2.呈现(10分钟)教师展示整式除法的运算过程,引导学生观察和分析,让学生尝试总结整式除法的法则。
3.操练(10分钟)教师让学生分组进行练习,运用刚刚学到的除法法则进行整式除法运算。
整式的除法
一、教学目标:
1.知识与技能:理解整式除法运算的算理,会进行简单的整式除法运算;
2.过程与方法:经历探索整式除法运算法则的过程,发展有条理的思考及表达能力.
3、情感与态度:体会数学在生活中的广泛应用
二、教学过程:
(一)复习回顾 复习准备
1.同底数幂的除法
同底数幂相除,底数不变,指数相减.
2.单项式乘单项式法则 单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连
同它的指数不变,作为积的因式.
(二)情境引入 由生活常识“先见闪电,后闻雷鸣”的例子引出课题.
下雨时,常常是“先见闪电,后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为3.0×108米/秒,而声音在空气中的传播速度约为300米/秒,你知道光速是声速的多少倍吗?
学生通过了解生活常识,进一步认识到数学在生活中无处不在,认识到了学习数学的重要性,并激发起学生学习数学的求知欲和好奇心.
(三)探究新知
1.直接出示问题,由学生独立探究.
你能计算下列各题吗?如果能,说说你的理由.
2.总结探究方法
方法1:利用乘除法的互逆方法 2:利用类似分数约分的方法
3.总结单项式除以单项式法则
单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的因式.
(四)对比学习
通过填表的方式对比学习单项式除以单项式法则
注意事项: 的因式在被除式里含有的字母连)
,,,0(n m n m a a a a n m n m >≠=÷-且都是正整数b a c b a n m n m x y x 2242222
53)3(28)2(1÷÷÷)(
1.由学生自己总结归纳,对所学习过的知识分析汇总,并让学生完成填
表工作。
2.要注意对学生总结归纳知识能力的培养。
(五)例题讲解 例1 计算:
做一做 如图所示,三个大小相同的球恰好放在一个圆柱形盒子 里,三个球的体积占整个盒子容积的几分之几?
注意事项:1、要注意运算顺序。
2、当底数是多项式时,把该多项式看成一个整体。
(六)课堂练习
1. 随堂练习
2.解决情境引入问题
(七)知识小结
师生互相交流总结本节课上应该掌握的单项式相除的相关知识,教师 对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习 感受.
(八)布置作业
1.基础作业:教材习题1.13知识技能 1,2,5
2.拓展作业:在一次水灾中,大约有2.5×105个人无家可归.假若一顶帐篷占地100 m 2 ,可以安置40个床位,为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约占多大地方?估计你学校的操场可以安置多少人?要安置这些人,大约要多少个这样的操场?
三、教学反思
在教学中要注意对学生综合能力的培养。
引导学生体会单项式乘法与单项式除法之间的联系与区别,感受数学的整体性,不断丰富学生的解题策略,提高解决问题的能力。
应当把更多时间交给学生。
本计算法则的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.
24342323234232)2()2()4(14)7()2()3(510)2(353)1(b a b a y x xy y x bc a c b a y x y x +÷+÷-⋅÷÷-2
33223222323366)2()4()(3)3(161481)2(2)1(y x y x mn n m y x y x b a b a ÷÷÷÷。