数学人教版六年级下册用比例解决问题(一)
- 格式:doc
- 大小:21.00 KB
- 文档页数:3
4.8用比例解决问题(教案)人教版六年级下册数学一、教学内容例1:甲、乙两地相距1200千米。
一辆汽车从甲地出发,以60千米/小时的速度向乙地行驶。
同时,一架飞机从乙地起飞,以800千米/小时的速度向甲地飞行。
问几小时后两车相距600千米?例2:某商店将一件商品标价为1200元,打8折后售出。
顾客购买后,商店发现标价过高,决定将售价降至960元。
问商店应打多少折?二、教学目标通过本节课的学习,同学们能够理解比例解决问题的基本概念,掌握用比例解决实际问题的方法,提高运用数学知识解决实际问题的能力。
三、教学难点与重点重点:掌握比例解决问题的基本方法。
难点:如何正确列出比例式,求解比例问题。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:笔记本、尺子、圆规。
五、教学过程1. 实践情景引入:假设你家到学校距离为1.2公里,你以每小时4公里的速度骑自行车去学校,你的朋友以每小时6公里的速度骑自行车去学校。
问你们多久后会在途中相遇?2. 例题讲解:(1)例1:甲、乙两地相距1200千米。
一辆汽车从甲地出发,以60千米/小时的速度向乙地行驶。
同时,一架飞机从乙地起飞,以800千米/小时的速度向甲地飞行。
问几小时后两车相距600千米?解:设t小时后两车相距600千米。
则汽车行驶的距离为60t千米,飞机行驶的距离为800t千米。
根据题意,两车相距600千米,可以列出比例式:60t / 800t = 600 / (1200 600)化简得:t = 0.5答案:0.5小时后两车相距600千米。
(2)例2:某商店将一件商品标价为1200元,打8折后售出。
顾客购买后,商店发现标价过高,决定将售价降至960元。
问商店应打多少折?解:设商店应打x折。
则原价为1200元,打x折后的价格为1200x / 10元。
根据题意,打8折后的价格为960元,可以列出比例式:1200x / 10 = 960化简得:x = 0.7答案:商店应打7折。
人教版六年级数学下册《用比例解决问题》一等奖创新教案《用比例解决问题》教案设计教学目标知识与技能1.加深对正、反比例意义的理解,能熟练地判断成正、反比例的量。
2.掌握利用正、反比例的意义解决比较简单的实际问题的步骤和方法,巩固和加深对所学的简易方程的认识。
过程与方法1.经历思考量与量之间关系的过程,体会函数思想。
2.经历用比例知识解决问题的过程,体会解决问题的不同方法,培养学生的发散思维。
情感、态度与价值观感受数学知识与实际生活的密切联系,激发学习数学的兴趣,培养学生勤于动脑的习惯。
重点难点重点:掌握用正、反比例知识解决问题的方法和步骤。
难点:能依据正、反比例的关系解决问题。
课前准备教师准备PPT课件学生准备练习本教学过程板块一复习铺垫,引入新课1.复习铺垫。
课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。
(2)一辆汽车从甲地开往乙地,行驶的速度和时间。
提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的两种量成什么比例关系?(学生讨论后解答)预设生1:(1)题中有速度、时间和路程三种量,速度不变,汽车行驶的时间和路程是两种相关联的量,这两种量成正比例关系。
生2:(2)题中有速度、时间和路程三种量,甲地到乙地的路程不变,汽车行驶的速度和时间是两种相关联的量,这两种量成反比例关系。
2.引入新课。
生产、生活中的一些实际问题也可以运用比例知识来解决。
今天,我们就来学习用正、反比例知识解决问题。
(板书课题:用比例解决问题)操作指导通过复习巩固判断两种量成什么比例关系为新知的学习做好铺垫,感受数学知识与实际生活的密切联系,从而激发学习兴趣。
板块二合作交流,探究新知活动1 用正比例知识解决问题1.课件出示教材59页例5。
张阿姨家上个月用了8 t水,水费是40元。
李奶奶家上个月用了10 t水,李奶奶家上个月的水费是多少?2.读题,并汇报题中的已知条件和所求问题。
预设生1:已知条件是张阿姨家上个月用了8 t水,水费是40元;李奶奶家用了10 t水。
人教版六年级下册数学用比例解决问题(1)第5课时用比例解决问题(1)【教学目标】知识目标:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。
能力目标:能进一步熟练地判断成正比例的量,加深对正比例概念的理解,沟通知识间的联系。
情感目标:培养学生良好的解答应用题的习惯。
【教学重难点】重点:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。
难点:能进一步熟练地判断成正比例的量,加深对正比例概念的理解,沟通知识间的联系。
【教学过程】一、复习铺垫,引入新课(课件出示)判断下面每题中的两种量成什么比例?(1)速度一定,路程和时间.(2)路程一定,速度和时间.(3)单价一定,总价和数量.(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.(5)全校学生做操,每行站的人数和站的行数.二、探究新知1、教学例5(1)学生再次读题,理解题意。
思考和讨论下面的问题:①问题中有哪三种量?哪一种量一定?哪两种量是变化的?②它们成什么比例关系?你是根据什么判断的?③根据这样的比例关系,你能列出等式吗?(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
(3)根据正比例的意义列出方程解:设李奶奶家上个月的水费是x 元。
828=10x 8x =28×10x = 81028⨯ x =35三、拓展应用教材63页3、4题四、总结今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?五、作业布置教材64页6、7题【板书设计】用比例解决问题例5 解:设李奶奶家上个月的水费是x 元。
828=10x 8x =28×10x =81028⨯ x =35。
人教版数学六年级下册用比例解决问题优秀教案(精选3篇)〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗《用比例解决问题》教学设计【教学内容】义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。
)【教材分析】这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。
教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。
判断过程也是正反比例意义实际应用的过程。
为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。
正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。
从而进一步提高学生分析解答应用题的能力。
【学情分析】学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。
本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。
教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。
在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。
通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。
第5课时用比例解决问题(1)教学内容教材第61页例5。
教学目标知识与技能使学生能正确判断情境中的两种量是否成正比例关系,并能利用正比例的意义解决实际问题。
过程与方法经历用正比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
情感态度与价值观感受数学知识与实际生活的密切关系,提高应用数学的能力。
体验解决问题的乐趣,激发学习兴趣,培养动脑思考的良好学习习惯。
重点、难点重点掌握用正比例知识解决问题的方法与步骤。
难点多种策略解决有关正比例的实际问题。
教法与学法教法引导自主学习法。
学法理解分析自主学习与合作交流相结合。
教学准备多媒体课件。
节一、引入新课。
师:谁能说一说生活中有哪些成正比例的量。
教师根据学生回答,板书相关的关系式。
师:判断两种相关联的量是否成正比例的关键是什么?今天,我们继续学习运用正比例知识解决生活中的实际问题。
学生列举生活中成正比例的量的例子。
1.一台拖拉机2小时耕地1.2公顷,照这样计算,8小时可以耕地多少公顷?答案:解:设8小时可以耕地x公顷。
1.2/2=x/8x=4.8答:8小时可以耕地4.8公顷。
2.服装厂要加工2400套校服,前5天加工了800套。
照这样计算,完成剩下的任务还需要多少天?答案:解:设完成剩下的任务还需要x天。
800/5=(2400-800)/xx=10答:完成剩下的任务还需要10天。
3.(2018·浙江宁波海曙区)同学们参加“小厨艺”拓展性课程学习,榨西瓜汁720mL正好可以给6个人喝,小红榨了1320mL西瓜汁,可以给多少个人喝呢?答案:解:设可以给x个人喝。
720/6=1320/xx=11二、自主探索,体验新知。
1.出示教材第61页例5。
2.分析解答。
(1)从图中你知道了什么?要解决什么问题?(2)学生独立解答后再在小组中交流。
3.学生汇报交流解答过程。
4.探究新知。
(1)题目中有哪两种量?它们成什么比例关系?你能用比例的知识解答这道题吗?学生独立思考,然后小组内讨论交流。
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
人教版数学六年级下册用比例解决问题教案(优选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
《用比例解决问题》教学设计
慈利县零阳镇一完小吴平平
【教学内容】:
新人教版小学数学六年级下册(p61例5、练习九相关的内容)。
【教学目标】:
1、掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
【教学重点】:
掌握用正比例的知识解决问题的方法与步骤。
【教学难点】:
利用正比例关系列出含有未知数的等式。
【教学准备】:多媒体课件
【教学过程】:
一、回顾旧知
1、判断下列每题中的两个量是不是比例,成什么比例?为什么?
(1)购买课本的单价一定,总价和数量。
(2)总路程一定,速度和时间。
(3)零件总数一定,生产的天数和每天生产的件数。
(4)总钱数一定,用去的钱数和剩下的钱数。
二、揭示课题、探索新知。
(一)教学例5。
1、课件出示例5情境图,
问:你从图中知道了哪些数学信息?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?(1)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。
)
(2)引入新课:像这样的问题也可以用比例的知识来解决. (3)学生思考和讨论下面的问题:
①问题中有哪三种量?哪一种量一定?哪两种量是变化的?
②它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(4)集体交流、反馈
水费:用水吨数 = 每吨水的价钱(一定)
(5)根据这样的比例关系,列出比例:
根据上面的数据,概括:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
板书: 解:设李奶奶家上个月的水费是χ元。
28:8 =χ:10
8χ=28×10
χ=280÷8
χ=35
答:李奶奶家上个月的水费是35元。
2、沟通联系,比较建构。
(1).同时呈现“算术法”和“比例法”如下。
28÷8×10
=3.5×10
=35(元)
解:设李奶奶家上个月的水费是χ元。
28:8 =χ:10
8χ=28×10
χ=280÷8
χ=35
答:李奶奶家上个月的水费是35元。
师:用“算术法”和“比例法”解题有什么联系和区别?
师:两种方法在计算求解时殊途同归,介算术方法必须求出那个不变的量的具体值,而比例方法只需根据数量关系表示出这个不变量即可,思维过程更具有广泛性、一般性。
3、即时练习,巩固提高。
师:同学们不仅用算术方法解决了李奶奶的问题,还发现用比例的方法也能解决问题,真能干!接下来,请大家一起去帮帮王大爷。
出示:
变式练习“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”(用比例解答)
4、小结方法。
师:在解决问题的过程中,我们要先分析题中的数量关系,根据不变的量找出两个相关联的量,判断它们成什么比例关系,再列出方程,解方程并检验作答。
(出示)用比例解决问题的步骤:
1、设要求的问题为X;
2、判断题目中哪个量是一定的?另外两种量成什么关系?
3、列比例式;
4、解比例,验算,作答。
三、巩固提高。
1、教材62页的做一做:1题。
2、教材练习九的第
3、
4、6题。
四、全课总结。
通过这节课的学习,你有什么收获?。