近世代数 环同态的性质共52页文档
- 格式:ppt
- 大小:3.68 MB
- 文档页数:52
环同态及同态基本定理定义2.设21:R R →ϕ是一个环同态,那么2R 中零元的完全原象}0)(|{)0(11=∈=-a R a ϕϕ叫作ϕ的模,通常记ϕϕKer =-)0(1.定理1.设R R −→−ϕ是一个环同态满射,令ϕKer I =那么(ⅰ) I R (ⅱ)R I R ≅证明:(ⅰ)对加法而言,ϕ显然是一个加群满同态,由第二章知 I R . (即I 是R 的不变子群).下面只需证明吸收律也成立即可..,R r I k ∈∀∈∀那么.00)()()()(I rk r k r rk ∈⇒===ϕϕϕϕ同理I kr ∈.∴ I R(ⅱ)由第二章知,存在R IR ≅Φ:.作为群同构,其中.][I R a ∈∀ ),(])([a a ϕ=Φ下面只需证明:I R b a ∈∀][],[,])([])([])][([b a b a ΦΦ=Φ但][][)()()(][])][([b a b a ab ab b a ΦΦ===Φ=Φϕϕϕ.∴ R I R →Φ:是环同构.即R IR ≅Φ. 定理 2.设R 是一个环而 I R ,那么必有环同态I R R →:ϕ.使得ϕ是满同态且模I Ker =ϕ.称这样的ϕ为环的自然同态.证明:令IR R →:ϕ,其中][)(a a =ϕ, 显然ϕ是个满射.而且R b a ∈∀,.)()(][][][)(b a b a b a b a ϕϕϕ+=+=+=+)()(]][[][)(b a b a ab ab ϕϕϕ=== ∴I R R ~.至于I Ker =ϕ是显然的.注意:上述定理1和定理2通称为环和同态基本定理.同时表明:环R 的任何商环I R 都是R 的同态象.而环R 的任何同态象实质上只能是R 的一个商环.与群同态类似,我们可以和到一些与第二章中平行的结果.定理3.设R R →:ϕ是环同态映射,那么(ⅰ)若S 是R 的子环)(S ϕ⇒是R 的子环(ⅱ)若I 是R 的理想且ϕ为满射)(I ϕ⇒是R 的理想(ⅲ)若S 是R 的子环)(1S -⇒ϕ是R 的子环(ⅳ)若S 是R 的理想)(1S -⇒ϕ是R 的理想证明: (ⅰ)S b a S b a ∈∃⇒∈∀,)(,ϕ使).(),(b b a a ϕϕ==所以S b a ∈-,于是R S S b a b a b a ≤⇒∈-=-=-)()()()()(ϕϕϕϕϕ.(子群)另外 ) ( S ab S ab b a b a ∈∈== )()()()(ϕϕϕϕ ∴)(S ϕ是R 的子环.(ⅱ) I R ,∴I 是R 的子环)()(I i ϕ⇒是R 的子环.须证明吸收律成立. ϕ是满射 ⇒⎪⎪⎭⎪⎪⎬⎫∈∈⇒=∈∃⇒∈∀=∈⇒∈∀I ai I ia IR a a R a R a i i I i I i ,)(,)()( ϕϕϕ使使 R I I ai i a i a I ia a i a i )()()()()()()()()(ϕϕϕϕϕϕϕϕϕ⇒⎪⎭⎪⎬⎫∈==∈== (ⅲ))(,1s b a -∈∀ϕ ∴S b a ∈)(),(ϕϕ, 而知S b a b a ∈-)()(),()(ϕϕϕϕ ∴⇒⎪⎭⎪⎬⎫∈⇒∈=∈-⇒∈-=---)()()()()()()()(11s ab S b a ab s b a S b a b a ϕϕϕϕϕϕϕϕ )(1s -ϕ是R 的一个子环.(ⅳ)R r R r S a s a ∈∴∈∀∈⇒∈∀-)(.,)().(1ϕϕϕ R S ,∴S a r S r a ∈∈)()(,)()(ϕϕϕϕ. 于是)()()()()()()()()(111s s ra S a r ra s ar S r a ar ---⇒⎪⎭⎪⎬⎫∈⇒∈=∈⇒∈=ϕϕϕϕϕϕϕϕϕ 满足吸收律.又由(ⅲ))(1s -⇒ϕ是R 的子环.于是R s )(1-ϕ.注意2.从定理3的证明中可知:除了(ⅱ)需要ϕ是满环同态外,其余情况都不需要ϕ是满射这个条件.极大理想的概念(1) 定义1. 设I 是R 环的一个理想且R I ≠,如果除了R 和I 以外,再也没有能包含I 的其他理想,那么称I 是R 的一个极大理想.∙ 将上定义更“数学化”些,就是:设 I R ,R I ≠,则I 是极大理想⇔不存在 I R 使R J I ⊄⊄∙ 欲判断理想 I R 是极大理想的一般有二步:① 验证 R I ≠ (即R r ∈∃ 但 I r ∉ ) 一般当R l R ∈,证I R ∉1② 设J R 且 J I ⊄,R J =⇒(2) 例子.例1. 设素数Z p ∈,那么由p 生成的理想()p I =必是极大理想.① 因为(){}()p Z n np p ∉⇒∈∀=1 (p 不整除1) ∴ Z p ≠② 设J Z ,且I ⊄J ,那么说明存在J g ∈但()p g ∉换句话说 p 不整除g ,由p 的性质 ()Z t s g p ∈∃⇒=⇒,.1, 使1=+tg sp . J I p ⊄∈,且 Z R J J tg sp J g ==⇒∈+=⇒∈1 例2. 设Q R =有理数环,那么取Q ∈2,则主理想()2=I 必不是极大理想.事实上 ()==2I {}Q g g ∈∀2, 则 Q x Q x ∈⇒∈∀2 I Q I x x =⇒∈⋅=22 ∴ I 不是极大理想. 例3. 设{}R ≠0为任一个环,则R 为单环⇔零理想{}0是极大理想.( ∴ 除环的极大理想只有 {}0 )例4. 设Z R 2=—偶数环,而R Z I 4=,可验证I 是R 的极大理想.事实上,① R ∈2 但I ∉2R I ≠⇒② 设R J I ⊄.须 证Z R J 2==.显然只需证明J ∈2即可.J j IJ ∈∃⇒但 I j ∉. 令m j 2= 而12+=k m .∴ ()24122+=+=k k j ,而J j ∈,且J k j J I K ∈-=⇒⊂∈424∴ R J J =⇒∈2极大理想的主要定理.引理1. 设 I R ,那么剩余类环I R为单环I ⇔是R 的极大理想. (这里R I ≠)证明: (⇐) 已知I 是R 的极大理想,须证I R R =只有平凡理想.设(){}J ≠0是R 的一个理想,而→R :πIR R =为自然同态映射, J R . 那么由§8知 ()J J 1-=π也是的理想,即J R .又注意到,I a ∈∀,则 ()[][]0a a =π ()πker =∴I[]J I J a J ⊆⇒∈⇒∈0 ,但 (){}J b J ∈∃⇒≠0 且 [][]J b b ∈⇒≠0 ,使 ()[][]I b b b ∉∴≠=,0π ,这说明 I ⊄J但I 是极大理想R J =⇒,于是利用π是满同态映射()()R R J J ===⇒ππ 即 R J =. ∴ I R R =是个单环.()⇒ 已知 IR R =是单环,(即R 只有平凡理想) 今设J R ,且,J I ⊄ 须证R J = :自然同态: →:πI R R =,且由§8定理3()J J =⇒π R .由J I ⊄J b ∈∃⇒且I b ∉, ∴ ()[][]0≠=b b π ( πker =I ) 而仅且 ()[]⇒∈=J b b π 这说明J 中有非零元[](){}0≠⇒J b ,但R 是单环R J =⇒. ∴ .R r ∈∀ ()[]J j J R r r ∈∃⇒=∈=π 使 ()[]()r r j ππ==∴ ()[]J I j r j r ∈=∈-⇒=-ππker 0∴ (),J j j r r ∈+-= 由 r 的任意性J R =⇒∴ I 是极大理想.引理2. 设{}0≠R ,且R 是可变换幺环,那么R 为域R ⇔为单环.证明: ()⇒ 若R 为域R ⇒必为单环()⇐ 显然需要证明R 是除环即可,也就是说:只要证明∙R 中每个元都可逆. ∈∀a ∙R ∴0≠a , 由a 生成的一个主理想{}()0≠a ,但R 是单 环()()a R R a R =∈∴=⇒1, 又 R 为可换幺环(){}ra R a ra a R =⇒∈∀=⇒1∴ a r a ⇒=-1可逆, 由a 的任意性R ⇒是除环即R 是域. 定理1. 设{}R ≠0为可变换的幺环,而R I ,那么I R 为域I ⇔是R 的一个极大理想.证明: ()⇒ I R 为域⇒I R 为单环I 1引理⇒为R 的极大理想.()⇐ I 为R 的极大理想1引理⇒I R 为单环 (1)又 I 为极大理想{} 0≠⇒≠⇒I R R I (2) R 可变换且I R R R ⇒∈1可变换且单位元为[]R 1 (3)由(1),(2),(3) 2引理⇒I R 为域.。