第9节 群的同态基本定理
- 格式:ppt
- 大小:619.00 KB
- 文档页数:46
叙述并证明群同态基本定理
政务民生:群同态基本定理
群同态基本定理是一个重要的数学定理,特别是在抽象代数学研究中提出的。
它指出,群中的每一个元素都是同态的,这意味着它是唯一可以把群上的每一个元素映射到自己,它可以使得所有操作都保持不变的函数。
群同态基本定理由数学家史奕柏在20世纪50年代早期提出,它表明群中所有
元素都是同态的,即群中的每一个元素都有一个唯一的同态。
同态是反应群在抽象代数学中的一个重要概念,它可以用来分析和推导群的结构和性质。
由群同态基本定理,我们可以得出下列定理:如果G为一个群,那么对于G的
每一个元素a,就有一个唯一的同态f,定义为f(g)=ag,映射r(h)=f(g)hg=ag hg,映射r是G上的同态。
通过群同态基本定理,我们可以进一步分析群的内部结构,由此可以推导出各
种与群有关的数学性质、定理,为数学进行进一步的研究提供各种有代表性的概念。
群同态基本定理也给数学界带来了极大的灵感,使得后世数学家更多能够将群的功能应用到其他相关学科,从而为科学进步和发展作出贡献。
第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ))()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。
§3.3 群的同态基本定理1.定义;设,G G 是两个群,如果映射:G Gϕ→满足,,a b G ∀∈ 都有()()(),ab a b ϕϕϕ=则ϕ称是G 到G 的一个同态。
若ϕ分别是单射、满射、双射,则称ϕ是单同态,满同态和同构。
用GG≅表示G 到G 的同构。
定理1 设,NG 则GG N。
证明 在G 与G N 之间建立映射如下::GG Nτ→,()a aN τ=,a G ∀∈。
则显然τ是G 到G N 的一个满射。
又,a b G ∀∈,都有 ()()()()()()ab ab N aN bN a b τττ==⋅=, 即τ是G 到G N 的一个同态映射。
所以G G N 。
注:以后将上面的同态映射τ称为G 到G N 的自然同态。
核与像:设ϕ是群G 到群G 的一个同态映射,称 ker {|,()},Na a G a e ϕϕ==∈=为ϕ的核,其中e 为G 的单位元;称Im {()|}a a G ϕϕ=∀∈ 为ϕ的像。
定理2 (同态基本定理) 设ϕ是群G 到群G 的一个同态满射,则ker ,.GN G G Nϕ=≅ 且证明 首先,{}e G ,由上一节定理2有{}1ker -=N e G ϕϕ= 。
其次,在G N 与G 之间建立映射如下: :GGN σ→,()()aN aa σϕ==,a G ∀∈。
(1)设aNbN=,则1a b N -∈,于是1()a b e ϕ-=,即11()()a b a b e ϕϕ--==,从而ab=,即G N 中的每个赔集在σ下的像唯一,因此σ确为G N 到G 的一个映射。
(2)a G ∀∈,因为ϕ是满射,所以存在a G ∈,使得()a a ϕ=, 从而存在G aN N ∈,使得()aN a σ=,即σ是满射。
(3)设()()aN bN σσ=,即11()()()()()a b a b e a b eϕϕϕϕϕ--=⇒=⇒=,所以1ker a b N ϕ-∈=,从而aNbN=,即σ是单射。
第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ))()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。
群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。
这些定理对于研究群及其结构和性质具有重要意义。
本文将分别介绍和阐述这三大基本定理。
一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。
该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。
其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。
同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。
因此,G/Ker(φ)与φ(G)同构。
二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。
该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。
换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。
同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。
然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。
最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。
因此,φ和ψ构成了G和H之间的同构关系。
三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。
该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。
同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。
然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。