同态基本定理与同构定理
- 格式:doc
- 大小:220.50 KB
- 文档页数:4
群论中的同态与同构理论群论是数学中的一个重要分支,研究群的性质和结构。
在群论中,同态和同构是两个基本概念,它们对于理解群的性质和群之间的关系非常重要。
一、同态的定义和性质在群论中,同态是指两个群之间的映射,它保持了群运算的结构。
具体来说,设有两个群G和H,如果存在一个映射φ:G→H,对于任意的x、y∈G,有φ(xy)=φ(x)φ(y),那么φ就是一个从G到H的同态。
同态具有以下性质:1. 同态保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
2. 同态保持单位元:对于任意的eG∈G,有φ(eG)=eH。
3. 同态保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。
二、同构的定义和性质同构是指两个群之间的一种特殊的同态映射,它是一种双射,并且保持了群运算和群结构。
具体来说,设有两个群G和H,如果存在一个映射φ:G→H,满足以下条件:1. φ是一个双射,即φ是一个一一对应的映射。
2. φ保持群运算,即对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
那么φ就是一个从G到H的同构。
同构具有以下性质:1. 同构保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。
2. 同构保持单位元:对于任意的eG∈G,有φ(eG)=eH。
3. 同构保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。
三、同态和同构的应用同态和同构在群论中有着广泛的应用。
它们可以帮助我们研究群的性质和结构,以及群之间的关系。
1. 同态的应用:同态可以用来研究群之间的映射关系。
通过同态,我们可以将一个复杂的群映射到一个简单的群,从而简化问题的研究。
同态还可以用来刻画群的性质,例如同态核和同态像等。
2. 同构的应用:同构可以将一个群与另一个群进行一一对应,从而帮助我们找到两个群之间的相似之处。
同构还可以用来研究群的结构,例如分类群的同构分类问题。
四、同态与同构的例子为了更好地理解同态和同构的概念,我们来看几个具体的例子。
同态和同构的关系
在数学中,同态和同构是两个重要的概念,它们描述了两个代数结构之间的关系。
1.同态(Homomorphism):同态是指将一个代数结构映射到另一个代数结构的映射,保持运算结构的性质。
如果存在两个代数结构A 和B,以及一个映射f:A→B,对于A中的任意元素a和b,满足f(a*b)=f(a)*f(b),其中"*"表示A和B上的运算,而"="表示两个代数结构中的相等关系。
简而言之,同态保持了代数结构中的运算规则。
2.同构(Isomorphism):同构是指两个代数结构之间存在一种双射关系,使得双射保持了运算结构和元素之间的关系。
如果存在两个代数结构A和B,以及一个映射f:A→B,满足以下条件:-f是一个双射,即对于A中的每个元素a,都存在唯一的元素b 在B中与之对应;
-对于A中的任意两个元素a1和a2,满足a1*a2=a3,则f(a1)*f(a2)=f(a3);
-对于B中的任意元素b1和b2,满足b1*b2=b3,则存在A中的元素a1和a2,使得f(a1)=b1,f(a2)=b2,f(a1*a2)=b3。
简而言之,同构保持了代数结构中的运算规则和元素之间的一一对应关系。
因此,可以将同构看作是一种更严格的同态关系。
如果两个代数结构之间存在一个同构映射,那么它们在结构和性质上是完全相同的,只是元素的表示不同而已。
需要注意的是,在数学中,同态和同构的概念不仅仅适用于代数结构,还可以应用于其他领域,如拓扑学、图论等。
1/ 1。
抽象代数知识点总结一、群的基本概念与性质1、集合及其基本概念集合是研究对象的所有对象的总体,且每个对象都是它的一个成员。
集合的基本概念有空集、全集等。
2、二元运算及其基本性质设M是一个非空的集合,如果对于M中的每一对元素(a,b),都有一个元素:c与之对应,那么就称c在二元运算下,是a和b的像,记作:c=a*b or c=ab 或c=a×b。
3、群的基本概念设G是一个非空集合,*是G上的一个二元运算,如果满足下列4条性质:1)封闭性:对于G中的任意两个元素a、b,有a*b=c,则c也是G中的一个元素。
2)结合律:对于G中的任意三个元素a、b、c,有(a*b)*c=a*(b*c)。
3)存在单位元:存在G中的一个元素e,对于G中的任意一个元素a,都有e*a=a*e=a。
4)存在逆元:对于G中的任意一个元素a,存在G中的一个元素b,使得a*b=b*a=e。
则称(G,*)为一个群,*e*为群的单位元,b为a的逆元。
4、群的基本性质群具有唯一性、反号的相等性、等式的一般性质以及二次方向等性质。
5、群的记号与群的表示法群记号一般由两部分组成,它们的含义可以简单分别叫做群名和运算名,前者表示群的所有元素的种类,后者表示群的元素相互之间的运算。
这是群的基本概念与性质的介绍,群是代数结构中的一种基本结构,具有很强的普适性,因此在很多数学分支中都有广泛的应用。
二、群的子群与陪集1、子群的定义设(G,*)是一个群,对于G的一个非空子集H来说,如果在G的运算*下,H构成一个群,则称H是G的一个子群。
2、子群的判定定理判定定理是指定群的一个非空子集是否为子群的方法,使得许多确定子群是否存在的问题可以迅速得到解决。
3、陪集的基本概念给定群G,a是G的一个元素,在G中a的左陪集和右陪集分别定义。
4、陪集的划分与陪集的等价关系陪集的划分是一个重要概念,若H是G的一个子群,a是G的一个元素,G可被H分成无穷个不相交的子集(陪集):aH={(ah|h∈H)}及Ha={(ha|h∈H)}三、同态与同态定理1、同态的定义设(G,*)和(G’,*’)是两个群,如果G、G’之间的映射f满足一定条件,即对于任意的a.b∈G,有f(a*b)=f(a)*’f(b),则称映射f为从(G,*)到(G’,*’)的同态映射。
群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。
这些定理对于研究群及其结构和性质具有重要意义。
本文将分别介绍和阐述这三大基本定理。
一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。
该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。
其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。
同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。
因此,G/Ker(φ)与φ(G)同构。
二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。
该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。
换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。
同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。
然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。
最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。
因此,φ和ψ构成了G和H之间的同构关系。
三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。
该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。
同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。
然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。
利用群同态基本定理证明群的第一同构定理
群的第一同构定理(2-isomorphism theorem):任何有限阶的群总是等价于其正规
子群的积。
证明:
首先,我们假设G是一组可交换的元素,表示有限阶的群。
根据群同构基本定理,所
有同构(isomorphic)群之间都是等价的,也就是说它们都可以用一组完全相等的字母表示。
其次,我们定义G的正规子群H为G中元素满足自身和其他元素的乘法结果也在G中。
按照群同态基本定理,G和H之间存在一种同构,这意味着他们之间也具有等价性,也就
是说他们可以用相同的字母表示。
最后,假设G的特定元素具有唯一的表示形式。
基于群同构基本定理可知,G和H之
间存在一种同构,因此G的每一元素都可以唯一表示为H的元素的乘积。
它暗示了群的第
一同构定理:任何有限阶的群总是等价于其正规子群的积。
第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ 即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ) )()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a G N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。
第九节 同态基本定理与同构定理
重点、难点:同态基本定理,满同态与子群的关系.
一 同态基本定理
前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.
定理2.9.1 一个群G 与它的每一个商群N G /同态.
证 令G a aN a N G G ∈∀→,;/: π
显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.
注1 定理2.9.1中的π称为自然同态;
注2 自然同态π一定是满同态.
利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.
自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.
定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合
})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.
注1 未必要求Φ为满射,但本书中同态均为满同态;
注2 一个同态是单同态⇔G e Ker ⊆=}{φ.
推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.
证 由于N G /的单位元是N ,则
N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.
定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则
(1)G Ker ϕ;
(2)G Ker G '≅ϕ/.
证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则
e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'
===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ
即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于
e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即
G Ker Ker xax ϕϕ⇒∈-1.
(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:
(ⅰ)ψ为映射:
).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ
(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则
ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则
)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.
综上所述,G Ker G '≅ψ
ϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩
⎨⎧≅'≤ϕϕϕIm /Im Ker G G
我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.
定义2.9.2 设A A →Φ:为集合之间的一个满射.
(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;
(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后
像).
注 一个不能多且一个不能少!
定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,
(ⅰ),G H ≤∀ 则G H ≤)(ϕ;
(ⅱ),G N ∀ 则G N )(ϕ;
(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;
(ⅳ),G N ∀ 则G N )(1-ϕ.
证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a H
b a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩
⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.
(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ)
)()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.
(ⅳ),),(1
G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.
注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.
二 同构定理
第一同构定理 设G G f '→:为群同态,则f G f Kerf G f
Im )(/=≅ 第二同构定理(方块定理)
H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.
第三同构定理(分式定理) 设G K G H K ,≤≤,则①G
H G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.
第四同构定理(对应定理) 设G G f '→:为群的满同态,则
}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(
且正规子群对应与正规子群.
有兴趣的读者可以参考相关文献书籍.
作业:
Page 79 第2题,第3题。