第五章(劳斯和赫尔维茨稳定性判据)
- 格式:ppt
- 大小:1.70 MB
- 文档页数:9
第五章简介:本章介绍了单输入单输出控制系统稳定性的定义及其判定依据。
对于不同的系统,稳定性的定义不同。
系统的稳定性指标是控制系统设计过程中需要考虑的众多性能指标中最重要的指标,不稳定的系统是无法使用的。
主要包括赫尔维茨判据、劳斯判据、幅角原理、奈奎斯特稳定性判据等概念.重点是赫尔维茨稳定性判据和劳斯稳定性判据及其在系统分析中的应用.难点是应用复变函数的幅角原理推导奈奎斯特稳定性判据和对稳定裕度的理解。
随堂测试:一、知识点名称1:控制系统稳定性的基本概念1。
是保证控制系统正常工作的先决条件。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:不稳定的系统是无法使用的。
2。
是控制系统最重要的性能指标。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:稳定性是控制系统最重要的性能指标知识点名称2:单输入单输出控制系统稳定的条件1.单输入单输出控制系统稳定的条件为()A 特征方程根具有副实部B特征方程根具有副实部C极点位于复平面的右半部D极点位于虚轴上正确答案:A解析:单输入单输出控制系统稳定的充分必要条件为特征方程根全部具有副实部2。
某单位反馈系统的开环传递函数为,则该系统稳定的K值范围为() A.K〉0 B。
K>1 C。
0〈K<10 D K〉-1正确答案:A解析:其特征方程为,根据二阶螺丝准则和朱里准则,该系统稳定条件为;所以的K的取值范围为K〉0知识点名称3:赫尔维茨稳定性判据1。
赫尔维茨矩阵的各项主子式行列式的值全部为正,是线性系统稳定的条件。
()A.充分 B 必要C充要 D 即不充分也不必要正确答案:C解析:线性系统稳定的充要条件赫尔维茨矩阵的各项主子式行列式的值全部为正。
2。
如果满足主子式前提下,若所有次顺序赫尔维茨矩阵的主子式为正,则所有次顺序赫尔维茨矩阵的主子式为正。
()A BC D正确答案:B解析:如果满足条件,若所有奇次顺序赫尔维茨矩阵的主子式为正,则所有偶次顺序赫尔维茨矩阵的主子式必为正;反之亦然。
可编辑修改精选全文完整版1、劳斯判据证明思路:(1)将给定的描述系统运动的高阶齐次微分方程变换为齐次状态方程.(2)给定对称正定(或非负定)矩阵Q,根据式Ax x= ,Q PA P A T -=+求出相应的矩阵P(3)由要求矩阵P为正定的条件证明赫尔维茨稳定判据2、赫尔维茨稳定性判据证明.Ax x= (1) Q PA P A T -=+ (2)设在输入信号为零的情况下,系统的齐次微分方程为01111=++⋅⋅⋅++---x a dtdx a dt x d a dt x d n n n n n n (3) 式(3)的系数行列式为:n n n a a a a a a a a a a a 0000000000000000010000011123451231-⋅⋅⋅⋅⋅⋅⋅⋅⋅=∆ 赫尔维茨判据为:系数行列式n ∆的各阶顺序主子式大于0.证明:首先将系统的高阶微分方程写成状态方程的形式.选择系统的状态变量为 []T n x x x x 21=令x x =1,则式(2)等价于下列状态方程:Ax x= ,其中1210000010000000001000000100000010b b b b A n n----=-(4) 该矩阵特点是:主对角线上除最后一个元素外,其余元素均为0;主对角线以上各元素为1;主对角线以下各元素从第二行开始依次为-bn 到-b1。
其次,应给定矩阵Q,并根据式(2)去求矩阵P设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21200000000b Q (5) 这是一个对称非负定矩阵,由此可知李雅普诺夫函数的导数为 2212nT x b Qx x V -=-= 。
只要x1,x2,…,xn 不全都为零,则0≠n x ,于是()x V 不可能恒为零.所以按式(4)选定的矩阵Q是合理的.再假设矩阵P是对角线矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-121000000000000p p p p P n n (6) 将式(4)、式(5)、式(6)代人式(2),即可得 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-11212112000000000000b b b b b b b b b P n n最后检验矩阵P的正定性.如欲系统的半衡点是大范围渐近稳定的,则矩阵P应是正定的,亦即矩阵P主对角线上各元素均应大于零,即有 0,0,012121>>>b b b b b b n 。
劳斯判据即Routh-Hurwitz判据一、系统稳定的必要条件判据是判别系统特征根分布的一个代数判据。
要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件:1)特征方程的各项系数都不等于零。
2)特征方程的各项系数的符号都相同。
此即系统稳定的必要条件。
按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。
二、系统稳定的充要条件系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。
运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。
运用判据的关键在于建立表。
建立表的方法请参阅相关的例题或教材。
运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。
在应用判据还应注意以下两种特殊的情况:1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。
于是表的计算无法继续。
为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。
若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。
此时,系统为临界稳定系统。
2.如果在表中任意一行的所有元素均为0,表的计算无法继续。
此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。
这样,表中的其余各元就可以计算下去。
出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。
这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。
三、相对稳定性的检验对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法:1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。
劳斯-赫尔维茨稳定判据内容劳斯–赫尔维茨稳定性判据(英语:Routh–Hurwitz stability criterion)是控制理论中的一个数学测试,是线性时不变系统(LTI)稳定的充分必要条件。
劳斯测试是由英国数学家爱德华·劳斯在1876年提出的快速算法,可以判断一线性系统其特征多项式的根是否都有负的实部。
德国数学家阿道夫·赫维兹在1895年独立的提出将多项式的系数放到一个方阵中(此方阵称为赫维兹矩阵),证明多项式稳定当且仅当赫维兹矩阵的主要子矩阵其行列式形成的数列均为正值。
二个程序是等价的,而劳斯测试提供一个有效计算赫维兹行列式的方法。
满足劳斯–赫尔维茨稳定性判据的多项式称为赫尔维茨多项式。
详解:此稳定性判据之所以重要,是因为若线性系统之特征方程式的根p均有负的实部,表示其解e为稳定的(BIBO稳定)。
因此稳定性判据提供了方式,可以在不求解线性系统的运动方程的情形下,判断其是否只有稳定解。
对于离散系统,对应稳定性的测试可以由Schur–Cohn判据、Jury稳定性判据及Bistritz稳定性判据来判断。
随着电脑的进步,此稳定性判据变的较少使用,另一种判断的方式则是用数值方法直接求解多项式,得到其解的近似值。
劳斯测试可以由辗转相除法以及在计算柯西指标时用施图姆定理来推导。
赫尔维茨利用另一种方式来推导其稳定性判据。
利用辗转相除法求解:劳斯–赫尔维茨稳定性判据和劳斯–赫尔维茨定理有关。
由定理的陈述,可得其中:1)p为多项式ƒ(z)的根中实部为负值的个数。
2)q为多项式ƒ(z)的根中实部为正值的个数。
(此假设ƒ(z)的根都不在虚轴上)3)w(x)为由施图姆定理得到的变号数(中间利用连续的辗转相除法),其中,y为实数。
根据代数基本定理,每个n次的多项式在复数平面上会有n个根(也就是,对于根都不在虚轴上的ƒ,p+q=n)。
因此可得到ƒ为(稳定的)赫尔维茨多项式当且仅当p−q=n。
²第5章 控制系统的稳定性分析控制系统能在实际中应用中的首要条件是系统必须稳定,分析系统的稳定性是控制理论的重要组成部分。
控制理论对于判断一个线性定常系统是否稳定提供了多种方法。
本章首先介绍系统稳定性的基本概念,然后,介绍几种系统稳定的判定方法,主要有代数稳定判据和顿域稳定判据。
并用频域指标来说明系统的相对稳定性。
§5-1系统稳定性的基本概念1)稳定的概念Ig1:力学模型 图5-1Ig2:力学模型 图5-22)自动控制的稳定性与上述力学系统相似,一般的自动控制系统中也存在平衡位量。
平衡位置的稳定性取决于信号为零时,系统在非零初始条件作用下是否能自行返回到原平衡位置。
如系统受到脉冲扰动后,被控量c (t )发生偏差△c (t ),这种偏差随时间逐渐减少.系统又逐渐恢复到原来的平衡状态,即则系统是稳定的,如图5-3a 所示;若这种偏差随时同不断扩大,即使扰动消失,系统也不能回到平衡状态,则系统就是不稳定的,如图5-3b 所示。
3)控制系统稳定的定义:若一个处于平衡状态的系统,在扰动的作用下,会偏离原来的平衡状态,而当扰动消失后,系统又能够逐渐地恢复到第15讲封原来平衡状态,称该系统是稳定的;否则,称该系统不具有稳定性。
稳定性是系统去掉外力作用后,自身的一种恢复能力,所以是系统的一种固有特性,它只取决于系统的结构和参数而与初始条件和外作用无关。
系统稳定性的概念分绝对稳定性和相对稳定性。
系统的绝对稳定性是指系统稳定或不稳定那个的条件。
系统的相对稳定性是指稳定系统的稳定程度,可以用超调量或稳定裕量表示。
§5-2系统的稳定条件线性闭环系统是否稳定,是系统本身的一种特性,与系统输入量无关。
因此,假设线性系统在初始条件为零时,输入一个理想单位脉冲δ(t).若系统输出的脉冲响应c(t)在t→∞时为零,即,则线性系统是稳定的。
这相当于系统在扰动信号的作用下,输出信号偏离平衡状态后,又能够逐渐地恢复到原来的平衡状态。