第三章立讲义体的投影
- 格式:ppt
- 大小:4.73 MB
- 文档页数:85
第三章立体的投影(一)教学内容1. 基本平面几何体三面投影的特征,几何元素投影分析2.基本平面几何体三面投影的对应规律3. 基本平面几何体表面上点、线的投影4. 圆柱体、圆锥体、球体的几何要素及其投影5. 圆柱面、圆锥面、球面上取点取线的投影作图方法(二)教学要求1. 熟练画出基本几何体(平面立体、曲面立体)的三视图2. 掌握根据基本几何体的两个视图,想出它们的空间几何形状和位置3. 掌握根据基本几何体的两面投影,画出它们的第三个投影4. 掌握根据基本几何体的已知投影,画出已知表面上点、线的未知投影三、建筑形体的基本表达方法1.多面正投影图当物体的形状和结构比较复杂时,仅用三面投影图表达是难以满足要求的,为此,在制图标准中规定了多种表达方法,绘图时可根据工程形体的形状特征选用。
对于建筑形体往往要同时采用几种方法,才能将其内外结构表达清楚。
从图3-4a)中我们可以看出,将物体放在六个相互垂直的平面中,将从前向后、从上向下、从左向右、从后向前、从下向上、从右向左六个方向看到画在平面图纸上的六个基本投影图,得到物体的平面投影图。
用正投影法绘制的物体的图形称为视图。
对于形状简单的物体,一般用三个视图就可以表达清楚,而对于复杂的房屋建筑,各个方向的外形变化较大时,往往采用三个以上的视图才能完整表达其形状结构。
如图3-5所示的房屋形体,可由不同方向投射,从而得到有五个视图的多面正投影图。
绘制建筑房屋的视图,从前方投射的A向视图为正立面图,应尽量反映出物体的主要特征,从上方投射的B向视图为平面图,从左方投射的C向视图为左侧立面图,从右方投射的D向视图为右侧立面图,从后方投射的E向视图为背立面图。
2.镜像投影图镜像投影是物体在镜面中的反射图形的正投影,该镜面应平行于相应的投影面,如图3-6a所示。
用镜像投影法绘制的平面图应在图名后注写“镜像”二字,以便读图时识别,如图3-6b。
镜像投影图可用于表示某些工程的构造,在装饰工程中应用较多,如吊顶平面图,是将地面看作一面镜子,得到吊顶的镜像平面图。
第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。
2.立体与平面相交其交线的画法,既求截交线。
3.两回转体轴线垂直相交其交线的画法。
4.立体的尺寸标注。
二、本章难点:1.圆球和圆环的投影及表面上点的投影。
2.圆锥、圆球被平面截切后,截交线的画法。
3.求作相贯线。
三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。
四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。
顶面和底面为正多边形的直棱柱,称为正棱柱。
常见的棱柱有三棱柱、四棱柱、六棱柱等。
1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。
从棱锥顶点到底面的距离叫做锥高。
当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。
常见的棱锥有三棱锥、四棱锥、六棱锥。
1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。
常见的回转体有圆柱、圆锥、圆球和圆环等。
一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。
OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。
这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。
2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。
2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。
2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。
图中的回转轴是铅垂线。
第3章立体的投影电子教案:3.1 基本立体的投影基本立体可分为平面立体和曲面立体。
表面均为平面的基本立体称为平面立体。
常见的有棱柱、棱锥,如图3-1所示。
表面由曲面和平面或完全由曲面组成的基本立体称为曲面立体。
最常见的曲面立体是回转体,包括圆柱、圆锥、球、圆环等,如图3-2所示。
将基本体放在三投影面体系中进行投射时,为了画图、读图的方便,通常将其“放平,摆正”。
放平——就是让基本体的底面处于平行面位置。
摆正——是在放平的基础上,让其余各面尽可能处于平行面或垂直面位置。
在以后画组合体视图或零件图时也要遵循这个原则。
图3-1 平面立体图3-2曲面立体3.1.1 平面立体的投影及其表面取点在投影图上表示平面立体就是把组成立体的平面和棱线表示出来,然后判别其可见性,把看得见的棱线投影画成实线,看不见的棱线投影画成虚线。
1.棱柱(1) 棱柱的投影常见的棱柱有正四棱柱和正六棱柱,图3-3(a)所示一正六棱柱,由六个相同的矩形棱面和上下底面(正六边形)所围成。
将其放平摆正后,上、下底面为水平面,其水平投影反映实形,另外两面投影积聚为直线。
正六棱柱的六个棱面中,前后两个面是正平面,正面投影反映实形;其余四个棱面均为铅垂面。
如图3-3(b)所示,作图过程如图3-4所示。
(a)(b)图3-3正六棱柱的投影及表面取点图3-4 正六棱柱的画图方法和步骤棱柱的投影特性是:在与棱线垂直的投影面上的投影为一多边形,它反映棱柱上、下底面的实形;另两个投影都是由粗实线或虚线组成的矩形线框,它反映棱面的实形或类似形。
(2) 在棱柱表面上取点在棱柱表面上取点,其原理和方法与在平面内取点相同。
该例中正六棱柱的各个表面都处于特殊位置,因此在其表面上取点均可利用平面投影积聚性的原理作图,并判别其可见性,如图3-3(b)所示。
2.棱锥(1) 投影分析和画法常见的棱锥有正三棱锥和正四棱锥,图3-5(a)所示为一正三棱锥,锥顶为S,其底面为等边△ABC,是水平面。
第三章基本立体的投影、截交线、相贯线§1立体的投影1.1平面立体的投影本节教学目标:掌握平面立体的投影特性和作图方法;掌握拉伸体的形成、投影及画法;熟悉平面立体表面中特殊位置的点、线的三面投影及画法。
重点:平面立体的投影特性及表面取点、取线的投影。
难点:平面立体表面中特殊位置处点、线的投影。
引入:通过对前面知识的学习已经知道,很多的机械零件都是由一些简单的基本形体组成,比如螺栓,我们可以将它分成正六棱柱、圆柱体和圆锥台三部分。
如果我们要绘制此螺栓的三视图,同学们都应该知道必须要绘制正六棱柱、圆柱体和圆锥台的三视图。
任何一个复杂的物体都可以看成由基本体组成,按组成基本体表面的性质进行分类,基本体可分为平面体和曲面体。
平面立体侧表面的交线称为棱线若平面立体所有棱线互相平行,称为棱柱。
若平面立体所有棱线交于一点,称为棱锥。
1.1.1棱柱的投影1. 以正六棱柱为例,分析平面立体的结构,(1)正六棱柱共有几个表面?有何关系?(2)正六棱柱共有几条侧棱?有何关系?提问:1)不同位置的投影有什么不同?2)应怎样放置最合理?提示:使尽可能多的表面和棱线处于特殊位置。
2.投影特性分析(1)投影分析:上、下两个底面——平行的两个侧面——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
3. 棱柱体的投影特性(重点:学生应掌握)(1)当棱柱的底面平行于某一投影面时,棱柱的投影在该面上为与底面相等的正多边形。
(2)另两面投影为几个相邻的矩形线框。
4. 棱柱表面取点、线重点:所取的点、线属于棱柱的哪个面上?进而再求三面投影。
***若点所在平面的投影可见,点的投影可见;若平面的投影积聚成直线,点的投影也可见。
例:例:已知四棱柱,试完成其V、H投影。
(图7-1)图7-1四棱柱的投影1.1.2棱锥的投影棱锥的投影是棱锥各顶点同面投影连线的集合。
1. 棱锥的定义2. 棱锥的形体分析(1)投影分析:下底面——顶点——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
第三章立体的投影基本要求:熟练掌握基本形体的三面投影的特性、平面和立体的截交线的性质和画法、立体相贯线的性质和画法;能判断出立体表面的点、线,会求线与立体的交点。
主要内容:1、立体的投影;2、平面和立体相交;3、两立体相贯。
3.1立体的投影一、内容:1、平面立体的投影特性、作图方法;2、曲面立体的投影特性、作图方法。
二、要求及重点:要求掌握平面立体、曲面立体的投影特性、作图方法,并能综合运用。
三、教学方式:通过模型、教具、例题及实际绘制,使学生掌握并能综合运用。
四、作业:布置相应的立体投影作业。
3.1立体的投影基本形体:平面体曲面体一、平面立体的投影1、平面立体:表面由平面所围成的几何体。
2、平面立体的投影:就是围成它的表面的所有平面图形的投影。
置下,五棱柱的投影特征是:顶面和底面的水平投影重合,并反映实形——正五边形。
五个棱面的水平投影分别积聚为五边形的五条边。
正面和侧面投影上大小不同的矩形分别是各棱面的投影,不可见的棱线画虚线。
2、作图步骤:如图3-1b、c。
3、棱柱表面上点的投影:如图3-1d。
(二)棱锥棱锥的棱线交于一点。
常见的棱锥有三棱锥、四棱锥、五棱锥等。
图3-2 四棱锥三面投影的作图步骤1、投影分析图示四棱锥的底面平行于水平面,水平投影反映实形。
左、右两棱面垂直于正面,它们的正面投影积聚成直线。
前、后两棱面垂直于侧面,它们的侧面投影积聚成直线。
与锥顶相交的四条棱线既不平行、也不垂直与任何一个投影面,所以它们在三个投影面上的投影都不反映实长。
2、作图步骤:如图3-2b。
3、棱锥表面上点的投影:如图3-2c。
二、曲面立体的投影1、曲面立体:由曲面或曲面与平面所围成的几何体。
2、常见的曲面立体是回转体。
回转体:由回转面或回转面与平面所围成的立体,常见的回转体有圆柱、圆锥、球、环等。
回转体的投影就是围成它的回转面或回转面和平面的投影。
1、投影分析如图3-3所示,当圆柱轴线垂直于水平面时,圆柱上、下端面的水平投影反映实形,正面和侧面投影积聚成直线。
第三章立体的投影立体按照其表面的性质,可分为平面立体和曲面立体两大类。
表面全部由平面围成的立体称为平面立体,表面由平面和曲面围成,或全部由曲面围成的立体称为曲面立体。
§3.1 平面立体一、平面立体的投影及其表面上的点平面立体的各个表面均为平面多边形,多边形的边即为各表面的交线(棱线),因此,绘制平面立体的投影可归结为绘制它的所有棱线及各棱线交点(顶点)的投影,然后判断可见性,将可见的棱线投影画成粗实线;不可见的棱线投影则画成虚线;当粗实线与虚线重合时,应画粗实线。
常见的平面立体是棱柱和棱锥。
1.棱柱(1)棱柱的投影(a)(b)图3-1 正六棱柱的投影图3-1所示为一个正六棱柱的立体图和投影图。
从本章开始,在投影图中不再画投影轴,但各点的三面投影仍要遵守正投影规律:水平投影和正面投影位于铅垂的投影连线上;正面投影和侧面投影位于水平的投影连线上;水平投影和侧面投影应保持前后方向的宽度一致及前后对应。
图3-1a 所示的正六棱柱,它的上、下底面均为水平面,六个棱面中,前后两个为正平面,其余四个为铅垂面。
作投影图时,先画上、下底面的投影:水平投影反映实形且两面重影;正面、侧面投影都积聚成直线段。
再画六条棱线:水平投影积聚在六边形的六个顶点上;正面、侧面投影均反映实长。
最后由读者自己分析各棱线和棱面的可见性。
要特别注意水平投影与侧面投影之间必须符合宽度相等和前后对应的关系,作图时可直接用分规量取距离,如图3-1b所示;但也可用添加45°辅助线的方法作图,如图3-2b。
(2)棱柱表面上的点棱柱体表面上取点和平面上取点的方法相同,先要确定点所在的平面并分析平面的投影特性。
如图3-1b,已知棱柱表面上点M的正面投影m'和N点的水平投影n,求作其它两个投影。
因为m'可见,它必在侧棱面ABB1A1上,其水平投影m必在有积聚性的投影上,由m'和m可求得m", 因点M所在的表面A B B1A1的侧面投影可见,故m"可见;由于N点的水平投影可见,它必在顶面ABCDEF上,而顶面的正面投影和侧面投影都有积聚性,因此n'、n"必在顶面的同面投影上。
第三章立体的投影第一节平面立体、曲面体的投影一、平面立体的投影基本几何体按其表面形状特征的不同,可分为平面基本立体和曲面基本立体两种。
1. 平面立体的表面特征是若干平面图形。
2. 曲面立体的表面特征是曲面或曲面和圆平面。
¾常用的基本平面立体包括:正方体、长方体、棱柱、棱锥、棱台。
¾常见的棱柱:三棱柱;四棱柱;五棱柱;六棱柱¾具有代表性的棱柱:六棱柱¾平面立体各表面的交线称为棱线。
平面立体的各表面是由棱线所围成,而每条棱线可由其两端点确定,绘制平面立体的投影又可归结为绘制各棱线及各顶点的投影。
(一)六棱柱六棱柱由顶面和底面及六个侧棱面组成。
侧棱面与侧棱面的交线叫侧棱线,侧棱线相互平行。
六棱柱的顶面和底面为水平面,水平投影反映实形,正面投影和侧面投影都积聚成直线段。
六条棱线均为铅垂线,在水平投影面上的投影积聚成一点,正面投影和侧面投影都互相平行且反映实长。
作图时,应判断其可见性,可见的投影画成粗实线,否则,画成虚线。
画图时一般先画出反映底面实形的那个投影(水平投影),然后再画正面和侧面投影。
作图步骤:①先用画出水平投影的中心线,正面投影和侧面投影的对称线;②画正六棱柱的水平投影根据正六棱柱的高度画出顶面和底面的正面投影和侧面投影。
③ 根据投影规律,再连接顶面和底面的对应顶点的正面投影和侧面投影,即为棱线、棱面的投影。
④最后线型加深。
总结:一个投影为多边形,另外两个为矩形,可判定为棱柱体,多边形的边数可以得出棱柱的棱数。
(二)棱锥棱锥的构成:由一个底面和三个侧棱面组成。
侧棱线交于有限远的一点锥顶。
棱锥处于图示位置时,其底面 ABC 是水平面,在水平投影上反映实形,正面投影和侧面投影积聚成水平直线段。
棱面 SAC为侧垂面,侧面投影积聚成直线段,正面投影和水平投影为类似形。
另两个棱面(SAB,SBC)为一般位置平面,三投影均不反映实形。
作图步骤:①画反映实形的底面的水平投影(等边三角形),再画Δ ABC 的正面投影和侧面投影,它们分别积聚成水平直线段;②根据锥高再画顶点 S的三面投影;③最后将锥顶 S与点 A、B、C 的同面投影相连,即得到三棱锥的投影图。