《反比例函数》导学案
- 格式:docx
- 大小:82.67 KB
- 文档页数:3
6.1 反比例函数导学案班级________ 姓名___________教学目标:知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;②会求简单实际问题中的反比例函数解析式。
过程与方法目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。
情感与价值观目标:①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。
教学重点与难点:反比例函数的概念;例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度是本节的难点。
一、合作学习:思考并完成下面的问题:问题1:北京到杭州铁路线长为1650km。
一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?(2) y与x有什么数量关系?能用一个函数表达式表示吗?问题2:测量质量都是100g的金、铜、铁、铝四种金属块的体积V(cm3),获得数据. 表中ρ(g/cm3)表示金属块的密度(近似值).已知锌的密度是7g/cm3, 金的密度是19.30g/cm3,(2)V与ρ有什么数量关系?能用一个函数表达式表示吗?做一做:1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为y米,宽为x 米,则y关于x 的关系式为_______________;2、已知北京市的总面积为1.68×104平方千米,全市总人口为n人,人均占有土地面积为s平方千米,则s关于n的关系式为_______________;归纳:一般地形如________________(k是常数,k≠0)的函数叫做_____________函数.___________叫做反比例函数的比例系数。
人教版数学九年级(下)第二十六章《反比例函数》导学案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
第一节反比例函数导学案第一节反比例函数导学案学习目标:1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2.能正确区分两变量是否为反比例函数关系。
学习重点:反比例函数的概念及应用。
学习难点:正确理解反比例函数的含义。
学习过程:预习1.如果两个变量x 、y之间的关系可以表示成y是x的,反比例函数的自变量x 。
2. 复习1.什么叫做函数?2.什么叫做一次函数?它的一般形式是3. 什么叫做正比例函数?它的一般形式是。
新课一.情境引入今年暑假小明背了很重的背包和同学们去野营,其中有几位同学因为约好要进行滑板车比赛,所以每人均带了一辆滑板车。
在途中他们遇到了一段泥泞路段,如果绕道,需要花很长时间,怎么办?小华说:“我们把滑板车铺在路上就可以通过。
”亲爱的同学们你知道他这样做的道理吗?二.探究新知探究一反比例函数的概念1. 阅读课本143页的内容并解决问题2. 总结反比例函数的定义3. 反比例函数的解析式⑴ ⑵ ⑶ 三.自主学习,巩固新知课本144页做一做四.范例学习例1若函数y= (m2-1)x 3m2+m-5 为反比例函数,求m 的值。
解析反比例函数y=k(k≠0) 的另一个形式是y=kx x探究二用待定系数法求反比例函数的解析式例2已知y= y1+y2 ,y1与x成正比例,y2与x成反比例,当x=1时,y=4;当x=3时,y=5;求x=-1时y的值。
课堂练习1.下列函数解析式中y是x的反比例函数的是()A.y=1311 B.y=- C.y= D.y=x2xx 1x2.当时,函数y=(+2)x是反比例函数。
3.在下列表达式中x均表示自变量,那么那些是反比例函数?每一个反比例函数相应的k值是多少?⑴y=14x;⑵y= -1 ;⑶y= ; ⑷xy=2. 2xx2六.课堂小结-我们本节课学习了⑴⑵ ⑶ 七.课堂作业1.下列哪些式子表示y是x的反比例函数?为什么?⑴xy=11⑷y= ;⑵y= 5-x ;⑶y=x2x 12.计划建设铁路1200km,那么铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数吗?写出y与x的关系式。
26.1.1 反比例函数 导学案【学习目标】1.理解反比例函数的概念,能确定简单的反比例函数关系式.2.培养学生分析问题的能力,并体会函数在实际问题中的应用.【重、难点】重点:理解反比例函数的概念.难点:用待定系数法求反比例函数.导学流程:一、【旧知回顾】:1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.(以上这种求函数解析式的方法叫: . )二、【新知学习】:知识点一:(阅读课本P2页,完成下列内容)1、用函数解析式表示下列问题中的关系:(1)京沪线铁路全程为1463千米,某次列车的平均速度v (千米/小时)随此次列车的全程运行时间t (小时)的变化而变化(2)某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长y (米)随宽x (米)的变化而变化 。
(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S 随全市总人口n (人)的变化而变化 。
2、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
可变形为:xy=k 或y=kx -1 针对练习一:1. 已知游泳池的容积为a m 3,向池内注满水所需时间t (h),随注水速度v (m 3/h),那么a = ,当 为定值时,t 、v 成_________关系.2.已知下列函数:(1) ,(2) ,(3)xy = 21(4) ,(5) ,(6)(7)y =x -4 ,其中y 是x 反比例函数的是知识点二:用待定系数法求反比例函数解析 例1、已知:y 与x 成反比例函数,当x=2 时, y=6(1)写出y 与x 的函数关系式。
(2)求当x=4 时, 求y 的值。
3x y =x y 2-=25+=x y x y 23-=31+=x y针对练习二: 1、当m =_____时,函数是反比例函数.2、已知y 与x 2成反比例,并且当x =3时y =4.(1)写出y 和x 之间的函数解析式为 ;(2)当x =1.5时y 的值为________.(3)当y=6时,x=达标检测,反思目标: 1、下列函数:(1) , (2) ,(3)xy =9 (4) ,(5) ,(6)y =2x -1, (7)y = x ,其中y 是x 反比例函数的是_____________. 2、若函数 是反比例函数,则m 的取值是中考连接:已知函数y =y 1+y 2 ,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 。
反比例函数复习导学案姓名 班级【一、学习目标】:1.系统复习《反比例函数》并应用;2.在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法. 【二、学习重点与难点】:重点:反比例函数知识的应用;难点:反比例函数知识的综合运用 三、【考点透视】1.能根据已知条件利用待定系数法确定反比例函数的表达式;2.能正确画出反比例函数的图象,结合图象或表达式说出其性质,并能运用其性质解决简单的实际问题;3.能结合反比例函数图象计算简单图形的面积。
一、 反比例函数的解析式 基础知识回顾(课前完成)一般地,形如 ______________( )的函数称为反比例函数. (其中,自变量x 的取值范围为___________________________ )反比例函数解析式还可以表示为_____________和_________________ 考点突破:1.下列函数中哪些是反比例函数? ① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x= . 2.若函数 是反比例函数,则n=______.变式:若函数 是反比例函数,则n=______.3.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________.变式:已知y 与x+2成反比例,当x=1时,y=-3,则 y 与x 的关系式为_______. 二、 反比例函数的图象以及性质基础知识回顾(课前完成)反比例函数的图象是 .4.若双曲线经过点(-3 ,2),则其解析式是______.5.函数 的图象在第______象限,当x<0时,y 随x 的增大而______ .6.函数 的图象在二、四象限内,则m 的取值范围是______ .7.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数 的图象上,则y 1与y 2的大小关系(从大到小)为 .12n y x -=221n y n x -=-()x y 5=x m y 2-=)0(<=k x ky变式:已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 .三、反比例函数中的面积问题8.如图1,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB 的面积为___________.变式:如图2,点P 是反比例函数 图象上任意一点, PA ⊥x 轴于A ,连接PO,则S △PAO 为_____.归纳:点PPB ⊥y 轴于B.则矩形PAOB(如图1)的面积为_______,S △PAO (如图2)为_____.9.如图1,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,PB ⊥y 轴于B,四边形PAOB 的面积为12,则这个反比例函数的关系式是________ .变式:如图2,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,连接PO,若S △PAO=8,则这个反比例函数的关系式是________ .四、反比例函数与一次函数的综合运用10.(2013东莞.中考)如图,一次函数 的图象和反比例函数 的图象交于A 、B 两点,其中A 点坐标为(2,1).(1)试确定k 、m 的值;(2)连接AO,求△AOP 的面积; (3)连接BO,若B 的横坐标为-1,求△AOB 的面积.变式:如图:一次函数 的图象与反比例函数 的图象交于M(2,m)、N(-1,-4)两点.(1)求反比例函数和一次函数的解析式; (2)当x)0(>=k xky xy 2-= xxy 2-=b ax y +=y =1y kx =-my x=)【当堂检测】1.某反比例函数的图象经过点(23)-,,则此函数图象也经过点( ) A .(23)-, B .(33)--,C .(23),D .(46)-,2.若反比例函数y=kx经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第____ _象限.3. 如图所示,已知一次函数y=kx+b(k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=mx(m ≠0)的图象在第一象限交于C 点, CD 垂直于x 轴,垂足为D.若OA=OB=OD=1,(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.4.如图,Rt △ABO 的顶点A 是双曲线y=kx与直线y=-x-(k+1)在第二象限的交点.AB ⊥x 轴于B,且S △ABO =32. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.【中考链接】1、你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积)S (mm 2图所示. ⑴ 写出y (m )与S (mm 2)的函数关系式; ⑵ 求当面条粗1.6 mm 2时,面条的总长度是多少米?2、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (A )不大于3m 3524;(B)不小于3m 3524; (C)不大于3m 3724;(D)不小于3m 3724yOxDC B Ay Ox C B A。
人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
26.1.1 反比例函数一、学习目标1.知识与技能目标(1)理解并掌握反比例函数的概念;(2)能判断一个给定的函数是否为反比例函数,并会用待定系数法求反比例函数的解析式.2.过程与方法目标(1)经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念;(2)能根据实际问题中的条件确定反比例函数的解析式,体会函数的建模思想.3.情感,态度与价值观目标(1)体会数学知识之间的相互联系;(2)体会数学知识在解决实际问题的重要作用,培养学生学习数学的兴趣.4.感悟重要数学思想方法类比、转化、待定系数法、整体思想等.二、学习重点与难点重点:理解反比例函数的概念,会用待定系数法求反比例函数的解析式.难点:利用反比例函数的相关知识灵活解题,体会整体思想.三、学习过程(一)“一史”:“闭眼打转问题”在世界著名的水都威尼斯,有个马尔克广场。
广场的一端有一座宽82米的雄伟教堂。
教堂的前面是一片开阔地。
这片开阔地经常吸引着四方游人到这里做一种奇特的游戏:把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面!奇怪的是,尽管这段距离只有175米,但却没有一名游客能幸运地做到这一点!全都走成了弧线,或左或右,偏斜到了一边!为什么呢?这就涉及到我们数学中的反比例函数知识了,学习完反比例函数后,有兴趣的同学可以研究研究! (二)复习回顾 1.什么是函数?2.正比例函数一般形式是______________,它的图象是一条过原点的_________.3.一次函数一般形式是________________,它的图象是一条_________________. (三)堂上练习1.下列函数中,y 是x 的一次函数的是( ) ①y=x-6; ②y=x2 ;③y=8x ;④y=7-xA.①②③B.①③④C.①②③④D.②③④ 2.若一次函数y=x+b 的图象过点 A (1,-1),则b=_______________. 3.图象经过点(2,4)的正比例函数解析式是____________________. (四)读例类比前段时间我们学习过的正比例函数:形如y =kx(k 是常数,k ≠0)的函数,这节课我们来学习另一种函数——反比例函数,首先请同学们思考:下列问题中,变量间具有函数关系吗?如果有,请列出解析式,并观察它们有什么共同特点?(1)京沪线铁路全程为1463 km,某次列车的平均速度为v(单位:km h)随此次列车的全程运行时间t(单位:h)的变化而变化:/________________________________.(2)某住宅小区要种植一个面积为1000 2m的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化:________________________________.(3)已知北京市的总面积为41.6810平方千米,人均占有的土地面积s (单位:米/人)随全市总人口n(单位:人)的变化而变化:________________________________.同学们已经列出了上面三个问题的函数解析式,它们是我们以前学习过的正比例函数吗?请同学们仿照正比例函数的定义来给上面的函数给个恰当的定义:________________________________.下面请同学们来比较一下正比例函数以及反比例函数的异同:(五)做例1.下列函数关系式中,哪些是y 与x 成反比例函数关系,并指出k 的值.(1) xy 3= (2)121+=y (3)2=xy (4) x y 43-= (5)12=x y (6) 21x y =2.若函数3-=m x y 是反比例函数,则m=_______.3.在下列函数中,y 是x 的反比例函数的是( ) A. 58+=x y B. 731+=xy C. 5=xy D. 22x y =(六)读例(例题学习)例1:已知y 是x 的反比例函数,当2x =时,6y =.(1) 写出y 与x 之间的函数解析式 ;(2)当4x =时,求y 的值. 分析:因为y 是x 的反比例函数,根据反比例函数的定义,可以设ky x =,再把2x =和6y =代入上式就可以求出常数k 的值. 解:(1)设xk y =, ∵当2x =时,6y =,∴ 62k = 解得 12k =∴ 12y x=(2)把 4x =代入 12y x =,得 1234y ==(七)做例(A 组)1. 反比例函数k y x=的图象过点(2,3),则k =_________.2. 若反比例函数xy 3-=的图象经过点(3,m),则m _________=.3. 下列各点中,在反比例函数2y x=-图象上的是( )A. (2,1)B. 2(,3)3C. (2,1)--D. (1,2)-(B 组)1.已知y 是x 的反比例函数,且当4x =时,12y =-.(1)写出y 与x 之间的函数解析式;(2)求当2y =时,x 的取值.(C 组)1.已知y 与2x 成反比例,并且当x 3=时, 4y =.(1)写出y 和x 之间的函数解析式;(2)求当 1.5x =时y 的值.归纳方法、注意事项:(八)创例(自主命题,要求附解答过程)(1)请同学根据反比例函数的定义写出一个反比例函数,同桌之间交换,并互相说出该函数k的值.(2)仿照上面例1的题型出一道有关反比例函数的解答题,同桌之间交换,并互相解答.(九)归纳小结(1)知识方面:反比例函数定义式及常见表达式:____________________________________________.(2)重要数学思想方法:____________________________________________________.(3)你有什么要对同伴们说的?(十)堂上小测(5分钟限时小测)(十一)课后作业1.课本P3 1、22.甲乙两地相距200km,有一汽车以每小时25km的速度由甲地去乙地,设汽车离乙地距离为s km,写出s(km)与行使时间t(h)之间的函数关系式:_________________________.3.池中有6003m水,每小时抽503m,写出剩水量Q(3m)与时间t(h)之间的函数关系式:___________.4.已知y与x-1成反比例,并且x=-2时y=7,求(1)y和x之间的函数关系式;(2)当x=8时,求y的值;(3)当y3=时,求x的值.5.下表给出了我们已学过的一种函数中x与y的一些值.(1)你发现这是个什么函数?写出这个函数的表达式;(2)根据函数表达式完成上表.6.已知y与2y=.x+成反比例,并且当x3=时,16(1)写出y和x之间的函数解析式;(2)求当4x=时y的值.。
1 反比例函数 导学案学习目标:1.理解反比例函数的概念,会求比例系数。
2.感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.学习重点:理解反比例函数的概念,会求比例系数。
难点:正确列出实际问题中的反比例函数关系。
学习过程中可能会用到的某些量之间的关系:,R U I = ,vs t = 长方形的面积=长⨯宽,总人口数总耕地面积人均耕地面积= 学习过程:一、自主学习1、自学课本新课内容并完成课本的题目。
(做在课本上。
)2、明确概念:反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为 。
*说明:(1)反比例函数)0(≠=k x k y 有时也写成)0(≠=k y 或)0(≠=k 的形式。
(2)反比例函数中,三个量x 、y 、k 均不能为0.二、合作学习,共同探索1、订正自主学习内容。
2、完成课本做一做。
先独立完成,再小组交流。
三、全班交流,知识应用1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x =- 解:上述关系式中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。
2、已知y 是x 的反比例函数,且当x =2时,y =9.(1)求y 关于x 的函数表达式;(2)当27=x 时,求y 的值;(3)当y =3时,求x 的值。
3、已知函数22(1)m y m x-=+当m 为何值时,y 是x 的反比例函数?并求出函数的表达式。
四、课堂小结。
这节课我们主要学习了 ,你的收获是: 。
五、当堂检测必做题:1.下列函数中,y 与x 成反比例函数关系的是( )A. 5xy =B.21y x =-C. 3y x =D. 11y x =-+ 2.在下列关系式中:①x y 5= ②x y 4.0= ③2x y = ④1-=xy ⑤x y -=5 ⑥x y 65= ⑦2=xy ⑧12-=x y 其中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。
17.4反比例函数 1.反比例函数教学目标1.了解反比例函数的概念.2.能够根据已知条件,确定反比例函数的解析式.情景问题引入北京至上海的高速路全程约1 200 km ,某人开汽车要从北京到上海,该汽车的速度v (km/h)和时间t(h)之间的函数解析式为v t =1 200,则在t =1 200v中,t 和v 之间是什么关系呢?是一次函数或正比例函数关系吗?[学生用书P51]1.反比例函数的概念反比例函数:一般地,形如__y =kx(k 是常数,k ≠0)__的函数叫做反比例函数.注 意:(1)反比例函数也可写成xy =k (k ≠0)或y =kx -1(k ≠0)的形式; (2)自变量x 的取值范围是不等于0的一切实数.2.求反比例函数的关系式方法:待定系数法.步骤:首先根据题意设出反比例函数的关系式,再从实际出发,找出一对对应值或图象上的一个点,用待定系数法求出k的值,确定关系式.[学生用书P51]类型之一反比例函数的概念下列函数是反比例函数的是( B )A.y=x3B.y=63xC.y=x2+2x D.y=4x+8【点悟】形如y=kx(k≠0)的函数是反比例函数,其变换形式有xy=k(k≠0)及y=kx-1(k≠0).对于与反比例函数的一般形式相符,但不能确定常数k是否不为0的,则不能肯定它是反比例函数.类型之二待定系数法求反比例函数的关系式y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.解:(1)y=-2x(2)见上表【点悟】求反比例函数的关系式时,可用待定系数法,但要注意哪个变量是自变量,哪个是因变量,要根据题意,从而正确地设待求的反比例函数表达式.类型之三求实际问题的反比例函数关系式一水池装水12 m3,如果从水管中 1 h 流出x m3的水,则经过y h可以把水放完,写出y与x之间的函数关系式及自变量x的取值范围.解:y=12x(x>0).【点悟】函数是刻画某些实际问题中变量之间关系的数学模型,如何把某些实际问题抽象成数学模型,是问题能否得以解决的关键.[学生用书P51]1.下列函数中,y是x的反比例函数的是( A )A.y=-12xB.y=-1x2C .y =1x +1 D .y =1-1x2.下列函数关系中,成反比例函数的是( A ) A .长方形的面积S 一定时,长a 与宽b 的函数关系 B .长方形的长a 一定时,面积S 与宽b 的函数关系 C .正方形的面积S 与边长a 的函数关系 D .正方形的周长L 与边长a 的函数关系3.如果函数y =x m为反比例函数,那么m 的值是( D ) A .1 B .0 C.12D .-14.已知反比例函数y =k x,当x =-1时,y =2,则k =__-2__.[学生用书P51]1.下列函数中,y是x的反比例函数的是( C )A.y=2x3B.y=2x3C.y=23xD.y=23-x2.若y=2x m-5为反比例函数,则m的值为( C )A.-4 B.-5C.4 D.53.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.已知该电路中电阻R为3 Ω时,电流I为2 A,则用电阻R表示电流I的函数关系式为( C )A.I=2RB.I=3RC.I=6RD.I=-6R4.近视眼镜的度数y(度)与镜片焦距x(m)成反比例.已知400度近视眼镜镜片的焦距为0.25 m,则y与x之间的函数关系式为( C )A.y=400xB.y=14xC .y =100x D .y =1400x5.已知y 是x 的反比例函数,且当x =3时,y =8,则这个函数的关系式为__y =24x__.6.已知反比例函数y =-32x. (1)说出这个函数的比例系数; (2)求当x =-10时,函数y 的值; (3)求当y =6时,自变量x 的值. 解:(1)y =-32x ,比例系数为-32.(2)当x =-10时,y =-32×(-10)=320.(3)当y =6时,-32x =6,解得x =-14.7.[2018·柳州]已知反比例函数的解析式为y =|a |-2x,则a 的取值范围是( C )A .a ≠2 B.a ≠-2 C .a ≠±2 D.a =±2【解析】根据反比例函数的定义,可知反比例函数的系数不能为0,故|a |-2≠0,解得a ≠±2.8.已知y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =-1时,y =1.求当x =-12时,y 的值.解:依题意,设y 1=mx 2,y 2=n x(m 、n ≠0).∴y =mx 2+n x.依题意有⎩⎪⎨⎪⎧m +n =3,m -n =1,解得⎩⎪⎨⎪⎧m =2,n =1. ∴y =2x 2+1x.当x =-12时,y =2×14-2=-32.9.若长方形的一边长为x ,另一边长为y ,面积保持不变.下表给出了x 与y 之间的一些值.(1)请你根据表格信息写出y 与x 之间的函数关系式; (2)根据函数关系式完成上表. 解:(1)y =4x.(2)如下表所示:10.[2018·杭州]已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时要卸货多少吨?解:(1)v=100t(t>0).(2)0<t≤5,当t=5时,v=20.∵k=100>0,∴v≥20,∴平均每小时至少要卸货20吨.。
反比例函数导学案第一课时反比例函数(一)------反比例函数的意义1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想4.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。
5.培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念学习过程:一、忆一忆回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?二、议一议1.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?2.矩形面积为6,设长为x,宽为y,那么x与y的关系式是怎样的?3.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:(3)变量I是R的函数吗?为什么?归纳:反比例函数:如果两个变量x,y之间的关系可以表示成的形式,那么y 是x的反比例函数,其中x是自变量,反比例函数的自变量x的取值范围是.三、练一练1.一个矩形的面积为202cm,相邻的两条边长分别为x cm和y cm。
那么变量y是变量x的函数吗?为什么?2.某村有耕地346公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:(2)根据函数表达式完成上表。
四、测一测1.下列等式中,哪些是反比例函数(1)3xy=(2)xy2-=(3)xy=21 (4)25+=xy(5)xy23-=(6)31+=xy(7)4-=xy2.当m取什么值时,函数23)2(mxmy--=是反比例函数?3.已知y是x的反比例函数,当1=x时,4=y.(1)求y与x的函数关系式(2)当x=-2时,求函数y的值4.苹果每千克x元,花10元钱可买y千克的苹果,求出y与x之间的函数关系式.五、小结与反思:第二课时反比例函数(二)------反比例函数的图像和性质1目标导学:1.体会并了解反比例函数的图象的意义2.能描点画出反比例函数的图象3.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
1 反比例函数 导学案
学习目标:
1.理解反比例函数的概念,会求比例系数。
2.感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.
学习重点:理解反比例函数的概念,会求比例系数。
难点:正确列出实际问题中的反比例函数关系。
学习过程中可能会用到的某些量之间的关系:
,R U I = ,v
s t = 长方形的面积=长⨯宽,总人口数总耕地面积人均耕地面积= 学习过程:
一、自主学习
1、自学课本新课内容并完成课本的题目。
(做在课本上。
)
2、明确概念:
反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成
的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为 。
*说明:(1)反比例函数)0(≠=
k x k y 有时也写成)0(≠=k y 或)0(≠=k 的形式。
(2)反比例函数中,三个量x 、y 、k 均不能为0.
二、合作学习,共同探索
1、订正自主学习内容。
2、完成课本做一做。
先独立完成,再小组交流。
三、全班交流,知识应用
1、下列关系式中的y 是x 的反比例函数吗如果是,比例系数k 是多少 ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x =- 解:上述关系式中y 是x 的反比例函数的有: ;
它们的比例系数k 分别是 。
2、已知y 是x 的反比例函数,且当x =2时,y =9.
(1)求y 关于x 的函数表达式;
(2)当2
7=x 时,求y 的值; (3)当y =3时,求x 的值。
3、已知函数22(1)m y m x -=+当m 为何值时,y 是x 的反比例函数并求出函数的表达式。
四、课堂小结。
这节课我们主要学习了 ,
你的收获是: 。
五、当堂检测
必做题:
1.下列函数中,y 与x 成反比例函数关系的是( )
A. 5xy =
B.21y x =-
C. 3y x =
D. 11
y x =-+ 2.在下列关系式中:①x y 5=
②x y 4.0= ③2x y = ④1-=xy ⑤x y -=5 ⑥x
y 65= ⑦2=xy ⑧12-=x y 其中y 是x 的反比例函数的有: ;
它们的比例系数k 分别是 。
3.若2
41(4)m m y m x --=-为反比例函数关系式,则m = _________。
4.计划修建铁路1200千米,那么铺轨天数y (天)与每日铺轨量x (千米/天)
之间的关系式是,y(填“是”或“不是”)x的反比例函数。
5.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y与x的函数关系式;
(2)当6
=
x时,y的值;
(3)当12
-
=
y时,x的值。
6.一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则6小时可到达乙地.
(1)写出时间t (时)关于速度v(千米/时)的函数关系式,说明比例系数的实际意义.
(2)若这辆汽车需在5小时内从甲地到乙地,则此时汽车的平均速度至少应是多少
选做题:
1.若梯形的下底长为x,上底长为下底长的1
3
,高为y,面积为60,则y与x的
函数关系是_________.(不考虑x的取值范围)
2.已知y-3与x+2 成反比例,且x=2时,y=7,求:
(1)y与x的函数关系式。
(2)求y=5时,x的值。