结构化学知识点归纳
- 格式:docx
- 大小:48.63 KB
- 文档页数:18
化学结构知识点总结归纳结构化学是化学中非常重要的一个分支,它涉及到分子和原子之间的结构、键合情况和空间构型等方面。
结构化学的研究对于理解化学反应、理论计算和新材料设计等方面都具有重要的意义。
在这篇文章中,我将对结构化学的一些重要知识点进行总结归纳,希望能够对读者有所帮助。
1. 分子结构分子是由原子通过共价键连接而成的化合物,它们具有固定的结构和空间构型。
分子的结构包括分子式、键长、键角、二面角和立体构型等方面。
分子式是用来表示分子中原子种类和数量的化学式,例如H2O表示水分子,CH4表示甲烷分子。
而键长和键角则是描述分子内原子之间的相对位置关系,它们对分子的性质和反应活性都有很大影响。
此外,二面角和立体构型也是分子结构中重要的参数,它们描述了分子中的空间构型及其对分子性质和反应活性的影响。
2. 共价键共价键是原子之间通过共享电子而形成的化学键,它是最常见的一种化学键类型。
共价键的形成和特性对于分子结构和化学性质有着重要影响。
共价键可以分为σ键和π键两种类型,其中σ键是由原子轴向的轨道重叠形成的键,而π键则是由平行轨道的重叠形成的键。
另外,共价键的长度和强度也与原子的电负性和分子的结构有很大关系。
共价键的性质和特性是结构化学研究的一个重要内容。
3. 杂化轨道杂化轨道是描述分子中原子轨道混成现象的概念,它对于分子结构的解释和分析具有重要意义。
杂化轨道的形成是由于原子在形成共价键时,其原子轨道发生重叠和混合的现象。
根据杂化轨道理论,sp、sp2、sp3和sp3d等不同种类的杂化轨道可以解释分子中的不同键型和分子构型。
杂化轨道对于理解分子的稳定性、反应活性和构型优劣有着重要的帮助。
4. 共振结构共振结构是由于某些分子存在多种等价的共振式结构而导致的一种描述方式。
通过引入共振结构,可以更好地解释分子中原子位置和键型的不确定性。
共振结构对于分子结构和稳定性的理解非常重要,它可以直观地反映分子中的电子分布情况和电荷分布情况,有助于预测分子的性质和反应活性。
第一章:原子结构1. S能级有个原子轨道,P能级有个原子轨道,d能级有个原子轨道,同一能级的原子轨道能量,每个原子轨道最多可以排个自旋方向相反的电子。
当2P能级有2个未成对电子时,该原子可能是或者,当3d能级有2个未成对电子时,该原子可能是或者。
2. S轨道图形为,P轨道图形为沿三维坐标轴x y z 对称分布的纺锤形。
3. 主族元素的价电子就是电子,副族元素的价电子为与之和(Cu和Zn除外)。
4. 19∼36号元素符号是:它们的核外电子排布是:5. 元素周期表分,,,,五大区。
同周期元素原子半径从左到右逐渐,原子核对外层电子吸引力逐渐,电负性及第一电离能逐渐,(ⅡA,ⅤA 特殊);同主族元素原子半径从上到下逐渐,电负性及第一电离能逐渐。
6. 依照洪特规则,由于ⅡA族,ⅤA族元素原子价电子处于稳定状态,故其第一电离能比相邻同周期元素原子,如:N>O>C ; Mg>Al>Na ,但是电负性无此特殊情况。
7. 电负性最强的元素是,其电负值为4.0 ,其次是,电负值为3.5第二章化学键与分子间作用力1.根据共价键重叠方式的不同,可以分为键和键,一个N2分子中有个σ键个П键,电子式为。
根据共价键中共用电子对的偏移大小,可将共价键分为键和键,同种非金属原子之间是,不同原子之间形成。
2.共价键的稳定性与否主要看三个参数中的,越大,分子越稳定。
其次是看键长,键长越短,分子越(键长与原子半径有正比例关系)。
键角与分子的空间构型有关,CO2,C2H2分子为直线型,键角是1800;CH4和CCl4为正四面体型,键角为;NH3分子构型为, H2O分子构型为,它们的键角均小于。
3.美国科学家鲍林提出的杂化轨道理论认为:CH4是杂化;苯和乙烯分子为杂化;乙炔分子为杂化。
其他有机物分子中,全单键碳原子为杂化,双键碳原子为杂化,三键碳原子为杂化。
4. 价电子对互斥理论认为ABn型分子计算价电子对公式为,其中H 卤素原子做配位原子时,价电子为个;O,S做配位原子时,不提供电子;如果带有电荷,做相应加减;出现点五,四舍五入。
第一章:原子结构1. S能级有个原子轨道,P能级有个原子轨道,d能级有个原子轨道,同一能级的原子轨道能量,每个原子轨道最多可以排个自旋方向相反的电子。
当2P能级有2个未成对电子时,该原子可能是或者,当3d能级有2个未成对电子时,该原子可能是或者。
2. S轨道图形为,P轨道图形为沿三维坐标轴x y z 对称分布的纺锤形。
3. 主族元素的价电子就是电子,副族元素的价电子为与之和(Cu和Zn除外)。
4. 19∼36号元素符号是:它们的核外电子排布是:5. 元素周期表分,,,,五大区。
同周期元素原子半径从左到右逐渐,原子核对外层电子吸引力逐渐,电负性及第一电离能逐渐,(ⅡA,ⅤA 特殊);同主族元素原子半径从上到下逐渐,电负性及第一电离能逐渐。
6. 依照洪特规则,由于ⅡA族,ⅤA族元素原子价电子处于稳定状态,故其第一电离能比相邻同周期元素原子,如:N>O>C ; Mg>Al>Na ,但是电负性无此特殊情况。
7. 电负性最强的元素是,其电负值为4.0 ,其次是,电负值为3.5第二章化学键与分子间作用力1.根据共价键重叠方式的不同,可以分为键和键,一个N2分子中有个σ键个П键,电子式为。
根据共价键中共用电子对的偏移大小,可将共价键分为键和键,同种非金属原子之间是,不同原子之间形成。
2.共价键的稳定性与否主要看三个参数中的,越大,分子越稳定。
其次是看键长,键长越短,分子越(键长与原子半径有正比例关系)。
键角与分子的空间构型有关,CO2,C2H2分子为直线型,键角是1800;CH4和CCl4为正四面体型,键角为;NH3分子构型为, H2O分子构型为,它们的键角均小于。
3.美国科学家鲍林提出的杂化轨道理论认为:CH4是杂化;苯和乙烯分子为杂化;乙炔分子为杂化。
其他有机物分子中,全单键碳原子为杂化,双键碳原子为杂化,三键碳原子为杂化。
4. 价电子对互斥理论认为ABn型分子计算价电子对公式为,其中H 卤素原子做配位原子时,价电子为个;O,S做配位原子时,不提供电子;如果带有电荷,做相应加减;出现点五,四舍五入。
结构化学基础知识点总结结构化学是化学的一个重要分支,主要研究物质的分子结构及其性质与变化。
以下是结构化学的基础知识点总结:1.化学键:化学键是原子之间的连接。
常见的化学键包括共价键、离子键和金属键。
共价键是通过共享电子对连接原子的,离子键是通过正负离子之间的电荷吸引力连接的,金属键是由金属离子的正电荷和自由电子之间的相互作用连接的。
2.价电子:原子外层的电子称为价电子。
它们决定了原子的化学性质和与其他原子形成化学键的能力。
主族元素的价电子数等于元素的主族号减去10,而过渡金属的价电子数则根据元素的电子排布确定。
3.分子式与结构式:分子式表示化合物中原子的种类和数量,用化学符号和小标数表示,例如H2O表示水分子。
结构式更详细地表示了化合物中原子之间的连接关系,包括键的类型和数量。
常见的结构式表示方法有线条结构式、希尔伯特投影式和叠式结构式等。
4.共价键的构型理论:共价键的构型理论包括共价键构型、价层电子对斥力理论(VSEPR理论)和化学键混合理论。
共价键构型指的是取得最低能量的共价键构型,包括线性、三角形平面、四面体和八面体等几何形状。
VSEPR理论用于预测分子形状,可以通过电子云对中原子周围的电子对的排列关系来确定分子形状。
化学键混合理论解释了化学键形成的机制,通过重新配对原子的电子,可以形成不同数量和性质的化学键。
5.分子轨道理论:分子轨道理论用于描述分子中的电子分布和性质。
分子轨道是原子轨道的线性组合,可以用分子轨道能级图表示。
共价键形成时,原子轨道的重叠导致分子轨道的形成,其中有两种类型:σ(sigma)轨道和π(pi)轨道。
σ轨道沿化学键方向形成,π轨道则垂直于化学键方向形成。
分子轨道的填充遵循由低能级到高能级的原则,通过分析分子轨道能级可以预测化合物的性质。
6.杂化轨道理论:杂化轨道理论用于描述共价键的形成。
原子的轨道混合以形成杂化轨道,其形状和方向决定了化合物的几何形状。
sp轨道是最常见的杂化轨道,即包含一部分s轨道和一部分p轨道的混合轨道,类似地,sp2和sp3轨道也是常见的杂化轨道。
结构化学重点掌握内容结构化学是研究和描述物质的组成、结构、性质及其在化学反应中的变化的一门学科。
以下是结构化学的重点掌握内容:1.原子结构和元素周期表:了解原子的组成,包括质子、中子和电子,以及元素周期表的组织和特点。
元素周期表按照元素的原子序数排列,可以根据周期表的位置推测元素的性质。
2.化学键:掌握化学键的种类和特点,包括离子键、共价键和金属键。
理解键的形成和断裂对化学反应的影响。
3.分子结构:了解分子的组成和结构,包括原子之间的排列和连接方式。
掌握分子的三维结构对其性质和反应的影响。
4.功能基团:掌握常见的有机功能基团,如醇、酮、醛等,并理解它们在有机化合物中的作用和重要性。
了解它们的命名规则和结构特点。
5.分子间相互作用力:了解分子间相互作用力对物质性质的影响,包括范德华力、氢键和离子-离子相互作用力。
理解这些相互作用力在物质的溶解、熔点和沸点等方面的作用。
6.反应速率和反应机理:掌握反应速率和反应机理的基本概念和计算方法。
理解反应动力学和化学平衡的关系,以及影响反应速率的因素。
7.配位化学:了解配位化学的基本概念和配位化合物的结构特点。
掌握配位键的形成和配位化合物的命名规则。
8.离子化合物的结构和性质:了解离子化合物的晶体结构和性质,包括离子半径比和离子键的强度。
了解溶液中离子的行为和离子反应的特点。
9.有机化学基本反应:掌握有机化学的基本反应类型,如取代反应、加成反应和消除反应。
理解这些反应的机理和实际应用。
10.分析化学方法:了解常见的分析化学方法,如质谱法、红外光谱法和核磁共振法。
理解这些方法的原理和应用。
此外,重点掌握实验技能和实验室安全知识也是结构化学的重要内容。
掌握正确的实验操作和安全措施,可以确保实验的准确性和安全性。
实验技能的掌握还包括实验仪器的使用和数据处理的方法。
总之,结构化学是化学学科的重要分支,掌握以上内容可以帮助理解物质的组成和性质,以及化学反应的基本原理和机理。
结构化学知识点归纳结构化学是研究分子及其化学性质的一门学科,旨在理解和预测化学反应、反应机理和分子结构与性质之间的关系。
下面是对结构化学常见的知识点进行的归纳。
1.分子结构与键-原子和分子的电子排布决定了它们的分子结构。
共价键形成时,原子通过共用电子对来相互结合,并形成分子的骨架。
-单、双、三键分别由1、2、3个电子对共享而成。
-极性键是由两个不同电负性的原子之间形成的键,其中一个原子更具电负性,吸引电子密度,形成部分正电荷;而另一个原子带有部分负电荷。
-非极性键是由两个电负性接近的原子相互作用形成的键。
2.分子构象-分子构象是分子在空间中可采取的不同形状和结构。
分子可以通过旋转化学键和自由旋转的化学键来改变其构象。
-分子内部的官能团之间的键角、键长和孤对电子的位置是决定分子构象的重要因素。
3.同分异构体-同分异构体是化学物质的两个或多个形式,它们有相同的分子式但具有不同的结构和化学性质。
-构造异构体是同分异构体的一种类型,它们在分子结构中的连接方式不同。
-空间异构体是同分异构体的另一种类型,它们的分子结构在空间中三维排列不同。
4.分子间力- Van der Waals力是分子间相互作用的一种类型。
它包括范德华力、氢键和离子-离子相互作用。
-范德华力是分子间由于电子的瞬时分布而产生的吸引力。
-氢键是分子间弱的相互作用力,它包括一个原子的氢原子与另一个原子上的具有独立电子对的原子之间的相互作用。
-离子-离子相互作用是由带正电荷的离子与带负电荷的离子之间的相互作用引起的。
5.分子轨道理论-分子轨道理论描述了分子中电子的行为。
它是通过将原子轨道线性组合来形成分子轨道。
-通过具有不同形状和能量的分子轨道,可以解释分子的化学性质,例如化学键的形成和分子的反应性。
-前线分子轨道是分子中电子占据的能量最低的、决定反应性的分子轨道。
以上是结构化学的一些常见知识点的归纳。
结构化学的学习可以更好地理解化学反应和物质的性质,进而应用于有机合成、药物研发和材料科学等领域。
结构化学知识点总结一、化学元素的基本概念化学元素是指由相同种类的原子组成的物质,是构成物质的基本单位。
目前已知的化学元素有118种,其中92种是自然存在的元素,其余的都是人工合成的。
每种化学元素都有其独特的原子序数和原子量。
二、原子结构原子是构成物质的基本单位,由电子、质子和中子组成。
电子带负电荷,质子带正电荷,中子是中性的。
原子的结构包括原子核和围绕原子核运动的电子。
原子核由质子和中子构成,质子的数量决定了原子的原子序数,中子的数量决定了原子的质量数。
三、周期表周期表是按照元素的原子序数排列的化学元素表。
元素周期表有7个周期和18个族,按照原子序数的增加顺序排列。
周期表中的元素按照其性质和化学反应的相似程度排列。
四、化学键化学键是原子之间的连接力,是构成分子和晶体的基本力。
化学键的种类有离子键、共价键和金属键。
在化学反应中,原子之间会发生化学键的形成和断裂。
五、分子和离子分子是由原子通过共价键连接而成的结构,是化学反应的基本单位。
离子是由原子通过离子键连接而成的结构,是带电荷的化学粒子。
六、溶液和溶解度溶解是指某种物质在另一种物质中完全散布开,在其中不再分辨出原来的微粒,这种现象叫做溶解。
当溶质在溶剂中的最大溶解度称为该溶质在该溶剂中的溶解度。
七、化学平衡化学平衡是指在一个化学反应中,反应物和产物的浓度或者压力在一定条件下保持不变的状态。
化学反应达到平衡后,反应速率也会保持不变。
八、化学反应化学反应是指一种或者多种物质转变成另一种或者另几种的过程,包括原子的重新排列,化学键的形成与断裂等。
化学反应的速率和方向由反应物的浓度、温度、催化剂等因素决定。
九、酸碱中和酸碱中和是指酸和碱在一定条件下相互反应,生成盐和水的化学反应。
酸碱中和反应需要满足酸碱反应的化学条件,包括氢离子和氢氧根离子的结合等。
十、氧化还原反应氧化还原反应是指发生氧化还原化学反应的化学变化,包括氧化和还原。
在氧化还原反应中,氧化剂会接受电子,还原剂会失去电子,从而发生电子转移的反应。
结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。
主要包括s 轨道、p 轨道、d 轨道和 f 轨道。
s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。
112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。
电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。
113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。
包括发射光谱和吸收光谱,可用于分析原子的结构和成分。
12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。
离子键:由正负离子之间的静电引力形成。
金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。
氢键:一种特殊的分子间作用力,比一般的范德华力强。
122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。
常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。
123 分子的极性取决于分子中正负电荷中心是否重合。
极性分子具有偶极矩,非极性分子则没有。
13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。
原子晶体:通过共价键形成,硬度大、熔点高。
分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。
金属晶体:由金属键维系,具有良好的导电性和导热性。
132 晶格结构晶体中原子、离子或分子的排列方式。
常见的晶格有简单立方、体心立方、面心立方等。
133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。
自范性:能够自发地呈现出多面体外形。
固定的熔点:在一定压力下,晶体具有固定的熔点。
21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。
结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。
它是化学领域的重要基础,对于理解化学反应、物质的性质和材料科学等方面具有关键作用。
以下是对结构化学一些重要知识点的汇总。
一、原子结构原子由原子核和核外电子组成。
原子核包含质子和中子,质子数决定了原子的元素种类。
电子在原子核外的分布遵循一定的规律。
玻尔模型提出了电子在特定轨道上运动,但其存在局限性。
量子力学的发展给出了更精确的描述,电子的运动状态用波函数来表示。
电子具有四个量子数:主量子数(n)决定电子所在的能层;角量子数(l)决定电子亚层;磁量子数(m)决定电子在亚层中的轨道取向;自旋量子数(ms)表示电子的自旋方向。
原子轨道是电子在核外空间出现概率密度分布的形象化描述。
s 轨道呈球形,p 轨道呈哑铃形。
电子填充原子轨道遵循能量最低原理、泡利不相容原理和洪特规则。
二、分子结构分子的化学键包括共价键、离子键和金属键。
共价键的形成是原子间通过共用电子对达到稳定结构。
价键理论认为共价键的形成是原子轨道重叠的结果。
杂化轨道理论解释了分子的空间构型,如 sp、sp2、sp3 杂化等。
价层电子对互斥理论可以预测分子的几何构型。
分子的极性取决于分子的正负电荷中心是否重合。
分子间作用力包括范德华力和氢键。
范德华力包括取向力、诱导力和色散力,它们对物质的物理性质有重要影响。
氢键的存在会使物质的熔点、沸点升高。
三、晶体结构晶体具有规则的几何外形和固定的熔点。
晶体分为离子晶体、原子晶体、分子晶体和金属晶体。
离子晶体由阴阳离子通过离子键结合而成,具有较高的熔点和硬度。
原子晶体中原子通过共价键形成空间网状结构,如金刚石。
分子晶体中分子间通过范德华力或氢键结合,熔点和硬度较低。
金属晶体由金属阳离子和自由电子通过金属键结合,具有良好的导电性和导热性。
晶体的空间点阵结构用晶胞来描述,通过晶胞参数可以计算晶体的密度等性质。
四、化学键的性质键能是指断开化学键所需的能量,键能越大,化学键越稳定。
结构化学知识点汇总结构化学是化学中研究物质结构和化学键的一门学科。
它主要关注分子和物质的组成、结构、性质和反应的关系。
以下是结构化学中的一些重要知识点:1.分子结构:分子是由原子通过化学键连接而成的系统。
分子结构可以通过实验和理论计算方法来确定,其中包括X射线衍射、核磁共振等实验方法,以及量子化学计算方法。
分子结构确定后,可以进一步研究其几何构型和电子结构。
2.分子几何构型:分子几何构型描述了分子中原子之间的相对位置和角度。
常见的几何构型包括线性、平面三角形、四面体和正多面体等。
几何构型对分子的性质和反应有很大影响。
3.化学键:化学键是连接原子的力,使分子稳定存在。
常见的化学键包括共价键、离子键、金属键和氢键等。
不同种类的化学键在结构和性质上有所差异,对化学反应和物质性质产生影响。
4. 杂化轨道:杂化轨道是分子中原子轨道的线性组合,用于描述与化学键形成相关的电子结构。
常见的杂化轨道包括sp、sp2和sp3等。
杂化轨道的形成可以解释分子的几何构型和键角。
5.共轭体系:共轭体系是指分子中相邻原子之间通过π电子共享形成的一系列共轭键。
共轭体系具有特殊的电子结构和光学性质,在有机化学中有重要应用,如共轭聚合物和色素。
6.极性:极性是指分子中正负电荷分布不均匀的现象。
极性分子具有永久电偶极矩,可以与其他分子通过氢键或其他非共价力相互作用。
极性对溶解度、沸点和电介质性质等有重要影响。
7.手性:手性是指分子或物体的非对称性,无法与其镜像完全重合。
手性分子具有手性中心或手性轴,可以存在两种立体异构体,即左旋和右旋异构体。
手性在生物学、药物化学和有机合成中具有重要意义。
8.反应速率和机理:结构化学可以研究化学反应的速率和机理。
反应速率受原子或基团之间键的强度、键的极性、形成或断裂键的能量差等因素的影响。
反应机理描述了反应的分子层面步骤和中间体。
9.功能材料:功能材料是指具有特殊结构和性质的材料,可用于传感、光电、催化等应用。
结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ(x , y , z ) 称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。
(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。
定的数字a 。
a 称为物理量算符A4. 假设4:态叠加原理:若ψ1, ψ2, " ψn , 为某一微观体系的可能状态,则由它们线性组合所得的ψ也是体系可能的状态。
ψ=c 1ψ1+c 2ψ2+" +c n ψn =∑c iψi 。
i力学量A 的平均值:Aˆψd τψA ∫。
=∫ψψd τ**5. 假设5:Pauli 原理:在同一原子轨道或分子轨道上,最多只能容纳两个自旋相反的两个电子。
或者说:对于多电子体系,波函数对于交换任意两个电子是反对称的。
三、箱中粒子的Schrödinger方程及其解 1. 一维无限势阱的Schrödinger方程:=2d 2ψ−=E ψ22m d xn 2h 2n πx其解为:ψn (x ) = ,E n =8ml 2l解的特点:(1)粒子可以存在多种运动状态;(2)能量是量子化的;(3)存在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点越多,能量越高。
以上这些特点是所以量子力学体系都有的特点。
第二章原子的结构和性质一、单电子原子的Schrödinger方程及其解ˆ=−1∇2−Z 1. Hamilton算符(原子单位):H2r2. 量子数和波函数:Schrödinger方程的解叫波函数,波函数由三个量子数(n , l , m )(分别叫主量子数,角量子数和磁量子数)确定:ψnlm =R nl (r ) Y lm (θ,φ) 。
三个n :0:1:∞,l :0:1:n −1,m :−l :1:l 。
量子数的取值范围(最小值:步长:最大值):2l ˆ, l l 波函数是H , l z 的共同本征函数,其本征值分别为:µe 4Z 2E n =−222, l (l +1) =2, m =8ε0h n分别表示能量,角动量的平方,角动量在z 轴上的分量。
单电子原子(氢原子或类氢离子)的能量只与主量子数n 有关。
3. 波函数的图像:总波函数的节面数:n −1。
其中径向波函数的节面数为:n −l −1,角度波函数的节面数为:l 。
径向分布函数:D (r ) =r 2R 2(r ) ,D (r )d r 表示出现在半径在r ~r +d r 球壳内出现的几率。
径向分布函数有(n −l ) 个峰(极大值)。
波函数的角度部分的图像:s :球形;p :两个大小相等、相互外切的球,一正一负。
有三个取向,分别为p x , p y , pz ;二、多电子原子的结构ˆ=−1∑∇2−∑Z +1∑1 :H 1. Hamilton算符(原子单位)i2i 2i ≠j r ij i r i由于Hamilton 算符中含有2. 单电子近似:1,不能采用变量分离法解Schrödingerr ij方程,因此多电子原子的波函数没有精确解,只有近似解。
将其它电子对某一电子的相互作用,采用平均场近似,最简单的是用屏蔽效应来考虑,这样总波函数就是每个单电子波函数的Slater 行列式。
3. 求屏蔽常数的Slater 规则:(1)将电子按内外次序分组:1s |2s , 2p |3s ,3p |3d |4s , 4p |4d |4f|5s ,5p |;(2)外层电子对内层无屏蔽作用,σ=0;(3)同一组电子σ=0.35(1s 组内电子间的σ=0.30);(4)对于s ,p 电子,相邻内一组的电子对它的屏蔽常数是0.85;对于d ,f 电子,相邻内一组的电子对它的屏蔽常数是1.00;(5)更内层的各组σ=1.00。
4. 轨道的能量:E i =−13.6三、原子光谱(Z i *)n 22, Z i *=Z −σi , σi =∑σijj1. 角动量耦合规则:两个角动量耦合:j :|j 1−j 2|:1:j 1+j 2,这里的角动量包括电子自旋角动量,电子轨道角动量。
三个角动量的耦合,先两个耦合后再与另一个耦合,与耦合的顺序有关。
对于轻原子,自旋角动量与自旋角动量耦合为总自旋角动量S ,轨道角动量与轨道角动量耦合为总轨道角动量L ,S 和L 耦合成总角动量J 。
对于重原子,每个电子的自旋角动量与轨道角动量先耦合成该电子的总角动量j ,j 与j 再耦合成总角动量J 。
2. 光谱项:2S +1L ,光谱支项:2S +1L J 。
L : 0 1 2 3 4 5符号: S P D F G H 3. 谱项能级的高低:Hund 规则:(1)原子在同一组态时,S 值越大其能量越低;(2)S 值相同时,L 值越大其能量越低;(3)S ,L 都相同时,电子少于半充满,J 值小能量低;电子多于半充满时,J 值大能量低。
4. 在外磁场中能级的高低:外磁场强时:每一光谱支项进一步分裂为2J +1能级,m J :(−J :1:J ) ,m J 越小能量越低。
5。
电子跃迁规则:∆S =0;∆L =0, ±1(L =0⎯⎯→L ' =0除外);∆J =0, ±1,(J =0⎯⎯→J ' =0);∆m J =0, ±1(∆J =0时:m J =0⎯⎯。
→m ' J =0除外)第三章共价键和双原子分子的结构化学一、变分法原理ˆ算符求得的能量平均值,对于任意一个品优波函数ψ(叫试探函数),用体系的H 总是大于或等于体系基态的能量(E 0),即:E =*ˆψH ψd τ∫ψψd τ*≥E 0因此,可以用带参数的波函数,通过对参数求极值,从而得到尽可能接近真实体系的波函数。
1. 线性变分法:选试探函数为线性函数ψ=c 1ψ1+c 2ψ2+" +c n ψn ,其中ψ1, ψ2, " , ψn 是已知函数(叫基函数),因此只要找到一组c 1, c 2, " , c n 使其平均能量极小,这时的试探函数就接近真实体系的波函数。
:若基函数选为原子轨道。
通过变分法2. 原子轨道组合分子轨道(LCAO MO)可得久期行列式:H 11−S 11E H 21−S 21E#H n 1−S n 1EH 12−S 12E"H 1n −S 1n EH 22−S 22E " H 2n −S 2n E=0#%#H n 2−S n 2E " H nn −S nn E其中ˆψd τ H ij =∫ψi *H j当i =j 时,叫库仑积分,或α积分;当i ≠j 时,叫交换积分,或β积分。
S ij =∫ψi *ψj d τ当i =j 时,S ii =1;当i ≠j 时,叫重叠积分。
有n 个原子轨道,就可以得到n 个分子轨道。
对于双原子分子,通常选能量相近的两个原子轨道,且对称性匹配(S ij ≠0)变分得到两个分子轨道,一个分子轨道的能量比原子轨道的能量低,叫成键轨道,另一个分子轨道的能量比原子轨道的能量高,叫反键轨道。
对称性不匹配的原子轨道S ij =0不能组合成分子轨道。
(选键轴为z 方向) 3. 分子轨道按对称性分类:(1)从z 方向看,没有节面,成圆柱形对称,叫σ轨道。
由(s , p z , d z 2)之间形成的轨道。
(2)从z 方向看,有一个节面,叫π轨道。
由(p x , d xz ; p y , d yz )之间形成的轨道。
(3)从z 方向看,有两个节面,叫δ轨道。
由(d x 2−y 2−d x 2−y 2或d xy −d xy )之间形成的轨道。
4. 同核双原子分子轨道的能级顺序:氮分子之前(包括氮分子):π2p;没有未5. 分子的顺磁性和反磁性:有未成对电子的分子,顺磁性(如O 2, B 2)成对电子的分子,反磁性。
二、双原子分子光谱1.转动光谱:同核双原子分子没有转动光谱(因转动时偶极矩不发生变化,一直为0)。
(1)转动能级:E J =J (J +1) (2)跃迁规则:∆J =±1h 28π2I,I =µr 2,µ=m 1m 2m 1+m 2=2B (J +1) 。
(3)跃迁时吸收光的波数与转动量子数J 的关系:ν2. 振动光谱:同核双原子分子没有振动光谱(因振动时偶极矩不发生变化,一直为0)。
1(1)振动能级:E υ=(υ+h νυ=0,1, 2, "2(2)跃迁规则:∆υ=±13. Raman 光谱:测的是散射光,主要用于测定没有红外活性的分子(如同核双原子分子)。
跃迁规则:跃迁时,分子的极化率会发生改变。
4. 电子光谱:弗兰克-康顿原理:电子跃迁或失去时,原子核来不及改变,垂直跃迁。
第四章分子的对称性一、对称操作和对称元素1. 对称操作:经过某一操作,没有看到操作的人不知道是否操作过。