薄壁圆筒在弯扭组合变形下主应力测定实验心得与体会
- 格式:docx
- 大小:36.79 KB
- 文档页数:2
薄壁圆筒在弯扭组合变形下主应力心得体会
薄壁圆筒在弯扭组合变形下的主应力分析是力学中的一个重要分支,对于结构力学和材料力学的研究都非常重要。
在进行弯扭组合变形下,薄壁圆筒受到了多个方向的载荷力作用,因此会发生主应力的变化。
主应力是薄壁圆筒中应力状态的唯一描述,可以帮助我们进行结构设计和材料选择。
通过对薄壁圆筒的主应力分析,我们可以得出以下几点心得体会:
1. 在进行弯扭组合变形下的主应力分析时,我们一般采用应力分析法和应变能法等方法进行计算。
2. 薄壁圆筒在弯曲和扭转同时作用下,主应力的大小和方向都会发生变化。
在设计结构时,需要考虑这些因素并选择适合的材料。
3. 在进行弯扭组合变形下的主应力分析时,需要考虑载荷的作用方向、强度和变化状态等因素,以便预测薄壁圆筒的变形和破坏情况。
4. 薄壁圆筒在弯扭组合变形下的主应力分析是一项深奥而有挑战性的研究领域,在实践中需要不断的实验验证和理论探索,以便获得更加准确和可靠的结果。
弯扭组合变形主应力的测定是一种重要的实验方法,可以用于材料的力学性质和变形特性的研究。
以下是一份弯扭组合变形主应力的测定实验报告,供参考。
1. 实验目的通过弯扭组合变形实验,测定材料在三轴应力状态下的主应力大小和方向。
2. 实验原理弯扭组合变形是一种三轴应力状态下的变形方法。
它是将拉伸和剪切两种应力作用于材料上,使其产生弯曲和扭转的复合变形。
在弯扭组合变形中,主应力的大小和方向可通过计算与测量获得。
3. 实验装置和材料实验装置包括弯曲扭转试验机、电子称量仪、应变计等设备。
试验材料为直径为10mm、长度为50mm的圆柱形铝合金试样。
4. 实验步骤(1) 根据试验要求,调整试验机工况参数,如加载速度、加载次数等。
(2) 将试样装入试验机,并进行预紧力的加载。
(3) 开始弯曲扭转试验,记录下相应的载荷、位移、时间等数据。
(4) 在试验过程中,及时采集应变计的数据,并进行数据处理和分析。
5. 实验结果通过弯扭组合变形实验,得到了试样的应力-应变曲线和主应力大小和方向的测量结果。
试验结果表明,在三轴应力状态下,铝合金试样的主应力大小和方向与加工方向有关。
6. 结论弯扭组合变形主应力的测定实验结果表明,铝合金试样在三轴应力状态下的主应力大小和方向与其加工方向有关。
该方法可以用于材料的力学性质和变形特性的研究,并具有一定的应用价值。
7. 实验总结弯扭组合变形主应力的测定实验需要选用适当的试验装置和材料,并按照标准操作程序进行实验。
在数据处理和分析过程中,要注意准确性和可靠性。
该实验方法对于材料力学性质和变形特性的研究具有重要意义和应用价值。
实验六薄壁管弯曲、扭转组合应力的测定一、实验目的工程实际中的构件一般处于复杂应力状态下,往往是几种基本变形的组合,要确定这些构件上某点的主应力大小和方向,也就比较复杂,甚至有些复杂的工程结构尚无准确的理论公式可供计算,在这种情况下,常常要借助实验的方法解决,如电测法、光测法等。
本实验的目的是在复合抗力下的应力,应变测定。
包括通过薄壁圆管在弯扭组合作用下其表面任一点主应力大小和方向的测定;薄壁管某截面内弯矩、剪力、扭矩所分别引起的应变的测定。
1.学习电阻应变仪的使用,学习了解半桥和全桥的组桥技术。
2.通过组桥技术,学习掌握在弯扭组合条件下分离弯曲正应变、扭转剪应变、弯曲剪应变的测量技术。
二、仪器设备1、静态电阻应变仪2、多功能组合实验台三、实验装置实验装置如图3-1所示,它由圆管固定支座1、空心圆管2、固定立柱图3-2 受力简图及几何尺寸3、加载手轮4、荷载传感器5、压头6、扭转力臂7、测力仪8、应变仪9等组成。
实验时顺时针转动加载手轮,传感器和压头使随螺杆套向下移动。
当压头和扭转力臂接触时,传感器受力。
传感器把感受信号输入测力仪,测力仪显示出作用在扭转力臂端点D处的荷载值ΔPo端点作用力ΔP平移到圆管E点上,便可分解成2个力:一个集中力ΔP和一个扭矩Mn=ΔP×a。
这时,空心圆管不仅受到扭矩的作用,同时还受到弯矩的作用,产生弯扭组合变形。
空心圆管材料为不锈钢,外径D=47.20 mm,内径d= 40.7 mm,其受力简图和有关尺寸见图3-2所示。
I-I截面为被测试截面,取图示A、C二个测点,在每个测点上各贴一枚应变花。
四、实验原理和方法由截面法可知,I-I截面上的内力有弯矩、剪力和扭矩,A、C点均处于平面应力状态。
用电测法测试时,按其主应力方向已知的和未知的,分别采用不同的布片形式。
1、主应力方向已知主应力的方向就是主应变方向,只要沿两个主应力方向各贴一个电阻片,便可测出该点的两个主应变ε1和ε3,进而由广义虎克定律计算出主应力σ1和σ3:σ1=(ε1+με3) ,σ3=(ε3+με1)2、主应力方向未知由于主应力方向未知,故主应变方向也未知。
实验四薄壁圆筒在弯扭组合变形下主应力测定实验内容:构件在弯扭组合作用下,根据强度理论,其强度条件就是。
计算当量应力,首先要确定主应力,而主应力得方向就是未知得,所以不能直接测量主应力.通过测定三个不同方向得应变,计算主应变,最后计算出主应力得大小与方向.本实验测定应变得三个方向分别就是-45°、0°与45°.实验目得与要求:1、用电法测定平面应力状态下一点得主应力得大小与方向2、进一步熟悉电阻应变仪得使用,学会1/4桥法测应变得实验方法设计思路:为了测量圆管得应力大小与方向,在圆管某一截面得管顶B点、管底D点各粘贴一个45°应变花,测得圆管顶B点得-45°、0°与45°三个方向得线应变、、.应变花得粘贴示意图实验装置示意图关键技术分析:由材料力学公式:得从以上三式解得主应变根据广义胡克定律1、实验得主应力大小__________________ 122 4545450450 2()2()() 2(1)2(1)E Eσεεεεεεσμμ--+⎫=±-+-⎬-+⎭实实方向2、理论计算主应力3、误差实验过程1、测量试件尺寸、力臂长度与测点距力臂得距离,确定试件有关参数.附表1 2、拟定加载方案。
先选取适当得初载荷P 0(一般取P o=lO %P max 左右)。
估算P max (该实验载荷范围P max 〈400N),分4~6级加载。
3。
根据加载方案,调整好实验加载装置。
4.加载.均匀缓慢加载至初载荷P o ,记下各点应变得初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片得应变值,直到最终载荷。
实验至少重复两次。
5.作完试验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
6、实验装置中,圆筒得管壁很薄,为避免损坏装置,注意切勿超载,不能用力扳动圆筒得自由端与力臂。
实验六 弯扭组合应力测定试验一、实验目的1.测定薄壁圆筒弯、扭组合变形时的表面一点处的主应力大小和方向,并与理论值进行比较。
2.进一步熟悉电阻应变仪及预调平衡箱的使用方法。
二、实验原理为了用实验的方法测定薄壁圆筒弯曲和扭转时表面一点处的主应力的大小和方向。
首先要测量该点处的应变,确定该点处的主应变ε1,ε3,的大小和方向,然后利用广义虎克定律算得一点处的主应力σ1,σ3。
根据平面应变状态分析原理,要确定一点处的主应变,需要知道该点处沿x,y 两个相互垂直方向的三个应变分量εx ,εy ,γxy 。
由于在实验中测量剪应变很困难。
而用应变计(如电阻应变片)测量线应变比较简便,所以通常采用测一点处沿x 轴成三个不同且已知夹角的线应变εa ,εb ,εc ,见图6-1(a )。
⎪⎪⎭⎪⎪⎬⎫-+=-+=-+=c c xy c y c x c b b xy b y b x b a a xy a y a x a ααγαεαεεααγαεαεεααγαεαεεcos sin sin cos cos sin sin cos cos sin sin cos 222222 (6-1)图6-1(a ) 图6-2(b )为了简化计算,实际上采用互成特殊角的三片应变片组成的应变花,中间的应变片与X 轴成0°,另外两个应变片则分别与X 轴成±45°角见图6-3。
用电阻应变仪分别测得圆筒变形后应变花的三个应变值,即ε0°,ε45°,ε-45°。
由方程组(6-1)得应变分量︒︒-︒-︒︒︒-=+-==4545450450εεγεεεεεεxy y x (6-2) 主应变公式为()2213212xy y xyx γεεεεε+-±+=(6-3)将(6-2)式代入(6-3)式得:()()24502045454513222︒︒︒︒-︒︒--+-±+=εεεεεεε (6-4)YcbaXαaαbαc XY+45°-45°主应变的方向︒-︒︒︒-︒---=--=454504545022εεεεεεεαyx xyr tg (6-5)求得主应变以后,可根据主应力与主应变关系的广义虎克定律计算得到主应力()()1323312111μεεμσμεεμσ+-=+-=EE(6-6)公式(6-4),(6-5)就是用直角应变花测量一点处的主应变及主方向的理论依据,由(6-2)式得出两个α值,即α与90°+α,一个方向对应着εmax ,另一个方向对应着εmin 。
实验四-薄壁圆筒在弯扭组合变形下主应力测定实验四 薄壁圆筒在弯扭组合变形下主应力测定实验内容:构件在弯扭组合作用下,根据强度理论,其强度条件是r应力r ,首先要确定主应力,而主应力的方向是未知的,所以不能直接测量主 应力。
通过测定三个不同方向的应变,计算主应变,最后计算出主应力的大小 和方向。
本实验测定应变的三个方向分别是 -45、0°和45、 实验目的与要求:1、用电法测定平面应力状态下一点的主应力的大小和方向2、进一步熟悉电阻应变仪的使用,学会1/4桥法测应变的实验方法设计思路:为了测量圆管的应力大小和方向,在圆管某一截面的管顶 B 点、管底D 点乞松二一 +万脣=亠习护二一了--- r从以上三式解得主应变。
计算当量各粘贴一个45。
应变花,测得圆管顶 B 点的-45 °、0°和45°三个方向的线应变°、 45° °拉力P实验装置示意图关键技术分析: 由材料力学公式:辛比一 .E , --- ----------:------------- ---------------- s in -a应变花的粘贴示意图大小;51方佝十t -- --------- --- -----£s ~S1实验过程1•测量试件尺寸、力臂长度和测点距力臂的距离,确定试件有关参数。
附表2•拟定加载方案。
先选取适当的初载荷P 0(一般取P °=IO % P max 左右)。
估算P max (该实验载荷范围P max <400N ),分4〜6级加载。
3•根据加载方案,调整好实验加载装置。
4 •加载。
均匀缓慢加载至初载荷 P °,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终 载荷。
实验至少重复两次。
5•作完试验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
弯扭组合变形实验报告薄壁圆管弯扭组合变形应变测定实验⼀.实验⽬的1.⽤电测法测定平⾯应⼒状态下主应⼒的⼤⼩及⽅向;2.测定薄壁圆管在弯扭组合变形作⽤下,分别由弯矩、剪⼒和扭矩所引起的应⼒。
⼆.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ静态数字电阻应变仪。
三.实验原理薄壁圆管受⼒简图如图1所⽰。
薄壁圆管在P⼒作⽤下产⽣弯扭组合变形。
薄壁圆管材料为铝合⾦,其弹性模量E为722GN, 泊松⽐µ为0.33。
m薄壁圆管截图1⾯尺⼨、如图2所⽰。
由材料⼒学分析可知,该截⾯上的内⼒有弯矩、剪⼒和扭矩。
Ⅰ-Ⅰ截⾯现有A、B、C、D四个测点,其应⼒状态如图3所⽰。
每点处已按–450、00、+450⽅向粘贴⼀枚三轴450应变花,如图4所⽰。
图2 图3 图4 四.实验内容及⽅法1. 指定点的主应⼒⼤⼩和⽅向的测定薄壁圆管A、B、C、D四个测点,其表⾯都处于平⾯应⼒状态,⽤应变花测出三个⽅向的线应变,然后运⽤应变-应⼒换算关系求出主应⼒的⼤⼩和⽅向。
若测得应变ε-45、ε0、ε45 ,则主应⼒⼤⼩的计算公式为()()()??-+--±++-=--245020454*******1211εεεεµεεµµσσE主应⼒⽅向计算公式为()()04545045452εεεεεεα----=--tg 或 ()45450454522εεεεεα+---=--tg2. 弯矩、剪⼒、扭矩所分别引起的应⼒的测定 a. 弯矩M 引起的正应⼒的测定只需⽤B 、D 两测点00⽅向的应变⽚组成图5(a )所⽰半桥线路,就可测得弯矩M 引的正应变 2MdM εε=然后由虎克定律可求得弯矩M 引起的正应⼒2MdM M E E εεσ== b. 扭矩M n 引起的剪应⼒的测定图5 ⽤A 、C 两被测点-450、450⽅向的应变⽚组成图5(b )所⽰全桥线路,可测得扭矩M n 在450⽅向所引起的线应变 4ndn εε=由⼴义虎克定律可求得剪⼒M n 引起的剪应⼒ ()214nd nd n G E εµετ=+=c. 剪⼒Q 引起的剪应⼒的测定⽤A 、C 两被测点-450、450⽅向的应变⽚组成图5(c )所⽰全桥线路,可测得剪⼒Q 在450⽅向所引起的线应变 4 QdQ εε=由⼴义虎克定律可求得剪⼒Q 引起的剪应⼒ ()214QdQd Q G E εµετ=+=五.实验步骤1. 接通测⼒仪电源,将测⼒仪开关置开。
应力试验工作总结应力试验是一种常见的工程测试方法,用于评估材料或结构在不同应力条件下的性能和稳定性。
在进行应力试验工作时,需要严格遵守操作规程和安全标准,以确保测试结果的准确性和可靠性。
以下是我对应力试验工作的总结和体会。
首先,进行应力试验前需要对测试设备进行严格的检查和校准,确保设备的正常运行和准确性。
在进行试验过程中,需要严格控制试验条件,包括温度、湿度、加载速度等因素,以保证测试结果的可比性和准确性。
其次,应力试验过程中需要严格遵守操作规程和安全标准,确保操作人员和设备的安全。
在进行试验操作时,需要注意操作技巧和步骤,避免操作失误导致的意外事故。
同时,需要配备必要的安全防护设备,如安全帽、护目镜、手套等,以保护操作人员的安全。
另外,应力试验的数据处理和分析也是非常重要的一环。
在进行试验后,需要对测试数据进行及时和准确的处理和分析,得出测试结果并进行合理的解释。
同时,需要对测试数据进行统计分析,评估试验结果的可靠性和稳定性。
最后,应力试验工作需要密切配合相关部门和人员,确保工作的顺利进行和结果的准确可靠。
在进行试验前,需要与相关部门和人员进行充分的沟通和协调,明确试验的目的和要求。
在试验过程中,需要及时和相关人员进行沟通和交流,解决试验中遇到的问题和困难。
总的来说,应力试验工作需要严格遵守操作规程和安全标准,确保测试结果的准确性和可靠性。
同时,需要注意试验过程中的数据处理和分析,确保测试结果的科学性和可靠性。
通过对应力试验工作的总结和体会,我相信在今后的工作中能够更加严谨和专业地进行应力试验工作,为工程项目的安全和稳定性提供可靠的数据支持。
实验五常见力学仪器操作及数据分析专项能力训练——扭组合变形薄壁筒应力测量实验一、实验目的1.用电测法测定平面应力状态下主应力的大小及方向,并与理论值进行比较;2.测定弯扭组合变形杆件中分别由弯矩、剪力和转矩所引起的应力,并确定内力分量弯矩、剪力和转矩的实验值。
二、实验仪器和设备1.多功能组合实验装置一台;2.弯扭组合变形实验梁一根;3.TS3860型数字应变仪一台。
三、实验原理和方法弯扭组合薄臂圆筒实验梁是由薄壁圆筒、扇臂、手轮、旋转支座等组成。
实验时,转动手轮,加载螺杆和载荷传感器都向下移动,载荷传感器就有压力电信号输出,此时电子秤数字显示出作用在扇臂端的载荷值。
扇臂端的作用力传递到薄壁圆筒上,使圆筒产生弯扭组合变形。
薄壁圆筒材料为铝,其弹性模量E=210GPa,泊松比μ=0.29。
圆筒外径D o=37mm,壁厚t=1.8mm。
薄壁圆筒弯扭组合变形受力简图如图5-1所示。
截面I—I为被测位置,由材料力学可知,该截面上的内力有弯矩、剪力和l转矩。
取其前、后、上、下的A、C、B、D为四个被测点,其应力状态如图5-2所示。
每点处按-45°、0°、+45°方向粘贴一个三轴45︒应变花(见图5-3(a)。
实验内容和方法如下:图5-1薄壁圆筒受力图图5-2 A、B、C、D点应力状态1.确定主应力大小及方向弯扭组合变形薄壁圆筒表面上的点处于平面应力状态,先用应变花测出三个方向的线应变,随后算出主应变的大小和方向,再运用广义胡克定律公式即可求出主应力的大小和方向。
由于薄壁圆筒上的点处于平面应力状态且材料为钢,与应变片灵敏系数的标定条件不符,故应进行横向效应的修正。
此时只要将主应力公式中的弹性模量E、泊松比μ用表观弹性模量E a、表观泊松比μa代替即可得到修正的主应力公式。
E a、μa的表达式按式(5-1)、式(5-2)分别为μμH H E E --=1)1(0a (5-1) μμμH H --=1a (5-2) 式中:E 、μ——分别为薄壁圆筒材料的弹性模量和泊松比;μ0——应变片灵敏系数标定梁材料的泊松比。
薄壁圆筒在弯扭组合变形下主应力测定实验心得与体会
薄壁圆筒在弯扭组合变形下的主应力测定实验是一项重要的力学实验,通过该实验可以研究薄壁圆筒材料在扭转和挠曲作用下的主应力分布规律。
在进行实验过程中,我深刻体会到以下几点:
首先,实验前需要准备完善的实验设备,包括圆筒夹持装置、力传感器、测力仪等。
这些设备的选择和使用对实验结果的准确性有着关键的影响。
在选择实验设备时,需要注意其测量范围、测量精度和稳定性等因素。
其次,实验操作过程中需要注意严格的操作流程和规范。
在夹持圆筒时,要确保夹持力均匀,避免对圆筒造成额外的变形和应力集中。
在施加载荷时,需要逐渐增加载荷,并记录下相应的位移和载荷数值。
同时,要避免短时间内施加过大的载荷,以免对圆筒材料产生破坏。
第三,数据处理和结果分析是实验的重要环节。
通过测量得到的载荷和位移数据,可以计算出圆筒在不同位置的应变和应力值。
进一步,可以通过应力分布的分析得到主应力分布的规律,并与理论分析进行对比。
在数据处理过程中,需要注意误差的分析和排除,确保实验结果的准确性和可靠性。
最后,实验结果的分析和讨论对于深入理解薄壁圆筒在弯扭组合变形下的主应力分布规律具有重要意义。
通过对实验结果的分析,可以对薄壁圆筒材料的力学性能有更深入的认识,为相
关工程设计和实际应用提供参考依据。
总的来说,薄壁圆筒在弯扭组合变形下主应力测定实验是一项复杂而有意义的实验,通过实验操作和数据处理,可以深入了解圆筒材料力学性能的变化规律,为实际应用提供理论依据和工程设计指导。