(整理)紫外可见分光光度计及其应用
- 格式:doc
- 大小:31.00 KB
- 文档页数:14
食品科技紫外可见分光光度计在食品检测中的应用研究刘羿希(贵州省检测技术研究应用中心,贵州贵阳 550014)摘 要:随着社会的发展和科技的进步,食品安全问题已经成为人们关注的焦点。
为了确保食品的安全性,需要采取一系列的检测措施,以保障公众的健康。
紫外可见分光光度计作为一种高效的分析工具,近年来在食品检测中得到了广泛的应用。
基于此,本文阐述紫外可见分光光度计的组成及其特点、紫外可见分光光度计在食品检测中的作用及其在食品检测中的应用。
关键词:紫外可见分光光度计;食品;检测;应用Study on the Application of Ultraviolet VisibleSpectrophotometer in Food DetectionLIU Yixi(Guizhou Testing Technology Research and Application Center, Guiyang 550014, China) Abstract: With the development of society and the progress of science and technology, food safety has become the focus of attention. In order to ensure the safety of food, a series of testing measures need to be taken to protect public health. Ultraviolet-visible(UV-VIS) spectrophotometer, as an efficient analytical tool, has been widely used in food detection in recent years. Based on this, this paper describes the composition and characteristics of UV-VIS spectrophotometer, the role of UV-VIS spectrophotometer in food detection and its application in food detection.Keywords: ultraviolet visible spectrophotometer; food; detection; application食品安全问题一直是备受公众关注的焦点问题。
紫外分光光度计是一种常用的分析仪,可以根据物质的吸收光谱研究物质的成分、结构和物质间相互作用,具有性能稳定、使用灵活、维护简便等优点。
其基本工作原理是利用一定频率的紫外/可见光照射被分析的有机物质,引起分子中价电子的跃迁,它将有选择地被吸收。
一组吸收随波长而变化的光谱,反映了试样的特征。
那么紫外分光光度计的主要用途有哪些呢?下面给大家一一介绍:
1.测定溶液浓度(含量)
这种应用最为常见,也被称作“定量分析”。
通过与已知浓度溶液比较测定未知浓度样品浓度的方法。
2. 测定材料特性
例如,夏天您在山上和海滩,以及冬季在滑雪场时所配戴的太阳镜、所用的防晒化妆品以及所穿的衣物,在经过“透过率”的测量后,就能很清楚地知道它们能否挡住目标波长的光线。
每种样品都有自己的特征“光谱”。
要辨别一种未知的样品,可将其与一种已知样品的光谱相比较(定性)。
3. 测定分子结构
您知道样品是由分子组成,而每个分子则由一组原子构成的么?每个分子都有自己的特征光谱(位置、强度等)。
尽管比较难,但许多大学和公司的实验室都进行过通过光谱来判定分子结构的实验。
总体而言,根据吸收与已知浓度的标样的比较,进行定量分析;同时对于一个特定的波长,吸收的程度正比于试样中该成分的浓度,因此测量光谱可以进行定性分析,这是紫外分光光度计最常用的两种功能。
紫外可见分光光度计及其在临床检验中的发展和应用摘要:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外可见分光光度计都有广泛而重要的应用。
紫外可见分光光度计有着较长的历史,其主要理论框架早已建立,制作技术相对成熟。
在临床检验中的应用更是广泛,现在国内几乎每个乡镇医院的检验科都有紫外可见分光光度计,构成紫外可见分光光度计的光、机、电、算等任何一方面的新技术都可能再推动紫外可见分光光度计整体性能的进步。
在追求准确、快速、可靠的同时,小型化、智能化、在线化、网络化成为了现代紫外可见分光光度计新的增长点。
关键词:紫外可见分光光度计,检验医学l9世纪50年代,首先出现了用千目观比色法的纳氏(Nessler)比色管,不久有杜氏(Duboscq)比色计,后者一直沿用到本世的40年代。
1911年,使用硒光电池的Berg比色计制成。
而这种光电比色计是分光光度计的雏形和基础。
本世纪3O年代看,由于秉灯、氢灯和各种棱镜,光学器材和电学器材的发展,美国Beckman公司的第~台分光光度计终于在1941年问世。
至60年代,紫外可见光分光光度计(UV—V 计)基本上取代了光电比色计 1957年,美国Technicon 公司按照Skeggs医生的方案,推出了世界上第一台自动化的临床生化分析仪。
60年代以后.各种自动化分析仪层出不穷。
特别是70年代起,各种分光光度计与计算机联姻,明显地扩大了仪器功能现在,分光光度计作为综台光学、电学(尤其是计算机技术)和精密机械学的发展和应用,已广泛应用于医学、食品、工业和农业等许多领域。
其中以uV—V计系列彰响最广、应用最普遍,并且还是其他分光光度计(如原子吸收分光光度计)的基础。
紫外可见分光光度法具有仪器价格低廉适用性广泛,尤其是采用微机控制以来,该技术得到了突飞猛进的发展,成为检验医学中必备的一个常规仪器,本文将重点介绍uv—v 计的原理,结构,特点及其在临床检验医学中的发展和应用。
紫外-可见分光光度计在颜色测量上的应用摘要:基于色度学测量原理。
利用紫外一可见分光光度计测量样品的蓝光白度,讨论了影响色度测量结果的关键因素。
关键词:颜色测量;紫外一可见分光光度计;蓝光白度1研究背景目前获得物体颜色的方法主要有三种:光谱光度测量法、色度计法和目视匹配法。
目视匹配法的结果较易受观察者的主观因素影响,色度计法虽可直接测量得到三刺激值或色品坐标,但其测量准确度依赖于色度计对色匹配函数的匹配程度。
光谱光度法测量先得到光谱反射因数,然后根据色度学公式计算三刺激值和色品坐标,测量准确可靠,被各个国家作为标准测量方法。
2实验部分2.1仪器与样品UV-2100紫外-可见分光光度计(岛津公司);色度积分球(岛津公司);标准白板(中国计量院);待测白板。
2.2样品前处理将标准白板与待测白板的表面用无水乙醇擦拭干净,待其自然晾干。
2.3实验方法开启紫外-可见分光光度计,进入色度积分球程序。
先设置标准白板的已知光谱反射(比)因数,再设置测量条件,分别为光源:D,视场:100。
在进行基线扫65描后,用标准白板定标仪器,若仪器测量值与已知值一致,则可进行待测样品的测量。
测量后在390nm-520nm每隔10nm记录白板的光谱反射(比)因数,进行计算。
3结果与讨论3.1测量原理及计算蓝光白度作为在国际标准]SO2470纸张、纸板-漫蓝反射因数的测量,以及我国纸张、塑料、建材等有关国家标准中都曾经或仍在应用的白度数值,其定义为:将测量数值带入(1)式,即可求得待测样品的蓝光白度值。
3.2影响颜色测量结果的关键因素3.2.1标准光源的影响现代色度仪主要采用A、C、D65光源作照明体,由于这三种光源在可见光区内的能量分布存在差异,造成样品本身出射的全辐亮度因数就有差异。
目前多用理想的D65照明体。
3.2.2标准观察者视场的影响标准色值是以标准观察者为条件的,20视场标准观察者和l舻视场标准观察者由于其光谱敏感函数不同,从而导致颜色三维量的不一致。
紫外可见分光光度计(UV-Vis分光光度计)是一种用途广泛的光学仪器,可用于测量物质对紫外和可见光的吸收和反射率。
在材料科学和化学领域,紫外可见分光光度计被广泛应用于测试薄膜的反射率。
本文将探讨紫外可见分光光度计测试薄膜反射率的原理。
1. 紫外可见分光光度计紫外可见分光光度计是一种利用分光仪原理,测量材料吸收或透射光的仪器。
它可以在紫外、可见光范围内测量样品对特定波长光的吸收或反射率。
2. 薄膜反射率测试薄膜反射率是指薄膜表面对入射光的反射能力。
通常使用紫外可见分光光度计来测试薄膜在不同波长下的反射率,以评估薄膜的光学性能。
3. 反射率测试原理在使用紫外可见分光光度计测试薄膜反射率时,通常会将薄膜样品固定在样品舱中,然后利用分光光度计发出特定波长的光,经过样品后被探测器检测。
根据探测器接收到的光强,计算出薄膜在该波长下的反射率。
4. 正弦光束法一种常用的测试薄膜反射率的方法是正弦光束法。
该方法通过调节入射角度和光路长度,使得探测器能够测量薄膜在不同入射角度下的反射率。
这样可以得到薄膜在不同波长和入射角度下的反射率曲线。
5. 测量注意事项在进行薄膜反射率测试时,需要注意样品的制备和处理,确保样品表面平整、无气泡和杂质。
另外,还需要校准仪器,选择合适的波长范围和入射角度,以获得准确的反射率数据。
6. 应用领域薄膜反射率测试在光学材料、太阳能电池、涂料、光学薄膜等领域都有广泛应用。
通过测试薄膜的反射率,可以评估其光学性能,为材料研发和生产提供重要的数据支持。
在紫外可见分光光度计测试薄膜的反射率原理中,正弦光束法是一种常用的测试方法,通过调节入射角度和光路长度,测量薄膜在不同入射角度下的反射率,得到反射率曲线。
在进行测试时,需要注意样品制备和处理,以及仪器的校准和参数选择,以获得准确的反射率数据。
薄膜反射率测试在光学材料、太阳能电池、涂料等领域的应用价值巨大,为材料研发和生产提供重要的数据支持。
紫外可见分光光度计在测试薄膜反射率时,除了使用正弦光束法外,还可以采用其他方法进行测试,例如准直束法、全反射法、矢量法等。
应用分光光度计已经成为现代分子生物实验室常规仪器。
常用于核酸、蛋白定量以及细菌生长浓度的定量。
我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。
基本原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= kcl式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
组成各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。
1.光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于色散元件的质量。
色散元件常用棱镜和光栅。
3.吸收池吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。
吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。
4、检测器检测器的作用是检测光信号,并将光信号转变为电信号。
现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
5、信号显示系统常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。
操作步骤操作之前1.1开启电源进行初始化开启主机电源,分光光度计将按屏幕所显示的项目进行自检和初始化,如下图所示。
所有项目检测完毕,初始化结束,整个过程大约需要4min(若使用多池检测需5min)。
每个项目进行初始化操作时将被加亮显示,当初始化完成后,该项右边的星标也将加亮显示。
紫外可见分光光度计及其应用
紫外可见分光光度计是一种基于紫外可见分光光度法原理的分析仪器,它利用物质分子对紫外可见光谱区的辐射吸收来进行分析。
这种分析方法主要以紫外线-可见光区域(通常200-800 nm)电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度。
紫外可见分光光度计在各个领域都有广泛的应用。
在物理学、化学、生物学、医学、材料学和环境科学等科学研究领域,以及化工、医药、环境检测和冶金等现代生产与管理部门,它都发挥着重要的作用。
具体来说,它可以用于鉴定物质,测量待测物质对可见光或紫外光(200~760nm)的吸光度并进行定量分析。
例如,它可以测定核酸和蛋白的浓度,也可以测定细菌细胞密度。
紫外―可见分光光度计在药品检测中的应用药品分析是保证药品安全有效的重要手段,在药品的研究、生产、流通、使用和监督管理等环节中均有举足轻重的作用,其主要内容包括性状分析、鉴别、检查和含量测定等方面。
高效液相色谱仪、气相色谱仪、紫外分光光度计等是制药生产中常用的检测仪器。
其中,紫外分光光度计由于准确度高、测定限度低、设备简便、仪器成本低、易于操作等优点,已成为制药生产中必备的检测设备之一,用于药物鉴别、检查和含量测定等。
紫外-可见分光光度法是通过测定物质在紫外-可见光区(200-760nm)产生紫外-可见吸收光谱,根据吸收光谱的特性,对该物质进行定性和定量分析的方法。
其理论基础为朗伯-比耳定律,溶液的吸光度和吸光物质含量、液层厚度乘积成正比。
对于一般的紫外分光光度法,其测量的相对误差在1%~3%。
随着大量心得显色剂的合成及应用,尤其是有关多元络合物和各种表面活性剂的应用研究,推进了元素测定的灵敏度的大幅提高。
采用预富集和示差法,适用质量分数从常量(1%~50%)到痕量(10-10~10-8)。
紫外-可见分光光度法由紫外分光光度法和可见分光光度法两种方法构成,这两种方法在测定的原理、仪器、操作等方面皆相同。
因此,统称为紫外-可见分光光度法,测定仪器一般采用紫外-可见分光光度仪。
在各国药典中,药品的理化常数、鉴别、检查和含量测定等很多项目中,都能见到紫外分光光度法的应用实例。
在制药生产中,紫外分光光度法应用最多的是药物含量的测定、药物杂质检测、药物稳定性考察、释放度、药物负载行为测定及物质结构鉴定等方面。
目前利用紫外分光光度计分析的药物品种有维生素、抗生素、解热药、去痛药、降血压药、安定药、镇咳药、滴眼药、磺胺类药、利尿药、某些妇科药、痢疾药、腹泻药、抗肿瘤药、抗结核药等。
1 紫外分光光度法应用于药物含量测定紫外-可见分光光度法由于灵敏度较高,不仅可用于常量组分的含量测定,也可用于测定微量组分、超微量组分以及多组分混合物同时测定等,在药物分析中主要用于原料药含量测定、制剂含量测定、含量均匀度和溶出度的检查等。
Jun. 2020 CHINA FOOD SAFETY145食品科技目前,在我国紫外可见分光度计法应用在很多的行业中,比如医疗行业、环境科学行业、材料科学行业等等,其中在食品行业也有着很重要的作用,其主要表现在食品检测中。
随着经济水平的飞速提高,人们对生活质量的要求越来越高,相应的对食品质量的要求也越来越高。
近些年来,接连不断的食品安全事故的发生使人们越来越注重食品质量,因此严格的食品检测是十分重要的,本文对食品检测中紫外可见分光度计法的应用做了简要介绍。
1 紫外可见分光光度计在食品检测中的应用1.1 检测食品中的重金属含量目前,食品重金属的问题是世界上各个国家都很重视的一个问题,在我国亦是如此,我国对食品添加剂中重金属的含量有着严格的测定。
紫外可见分光光度计可以测量食品添加剂中砷、铅、铜的含量。
比如,利用紫外可见分光光度计,采用碘、四氯化碳萃取光度法间接测定食品中的痕量铜方法,在酸性介质中,Cu 2+氧化I -定量析出I 2,碘-四氯化碳经萃取后用分光光度法进行测定,即可间接测定出食品中的痕量铜[1]。
1.2 检测食品中农药等的含量农药是很多农产品生产中会使用的一种药品,他可以保障农作物的质量促进其生产,农药具有高效的特点,且被广泛应用在食品领域,因此检测食品中农药等的含量是十分重要的。
紫外可见分光光度计法是测量食品中农药含量的方法之一,这种方法操作简单,灵敏度高。
通过紫外可见分光光度计方法检测食品中的农药含量的具体方法为选取样品,然后提取样品中的成分,净化、显色反应、测定。
这种方法现在普遍应用在食品的农药检测中。
1.3 检测食品中的硝酸盐紫外可见分光光度计是我国食品行业中检测硝酸盐的最普遍方法之一,检测过程简便且准确。
目前很多的食品企业选用紫外可见分光光度计法来检测食品中的硝酸盐含量[2]。
1.4 检测食品中的甜蜜素目前,在食品领域中可检测食品中甜蜜素的方法有很多,但有很多方法在应用过程中还存在着一定的缺陷,比如红外分光光度计法,这种方法在检测食品的甜蜜素的时候操作十分复杂,需要耗费一定的时间才能完成。
科技论文写作期末作业西北民族大学生命科学与工程学院11级生物技术(1)班符朝方学号:P112114841紫外可见分光光度计及其应用李诗哲西北民族大学生命科学与工程学院兰州730100摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。
下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用1引言:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。
2原理:紫外可见分光光度法紫外可见分光光度法【1】是根据物质分子对波长为200~760nm 的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
波长长的光线能量小,波长短的光线能量大。
分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。
分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。
2.1有机化合物的紫外可见吸收光谱【2】有机化合物的电子跃迁与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。
跃迁类型有:σ→σ*、n→σ*,π→π*、n→π四种。
饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。
不饱合机化合物的电子跃迁类型为n→π*,π→π*跃迁,吸收峰一般大于200nm.2.2有机化合物的吸收带吸收带(absorption band):在紫外光谱中,吸收峰在光谱中的波带位置。
根据电子及分子轨道的种类,可将吸收带分为四种类型。
(1)R吸收带(2)K吸收带(3)B吸收带(4)E吸收带2.3无机化合物的紫外可见吸收光谱无机化合物的UV-Vis光谱吸收光谱主要有:电荷迁移跃迁及配位场跃迁。
(1)电荷迁移光谱某些分子既是电子给体,又是电子受体,当电子受辐射能激发从给体外层轨道向受体跃迁时,就会产生较强的吸收,这种光谱称为电荷迁移光谱。
如苯酚基取代物在光作用下的异构反应。
(2)配位跃迁光谱在配体存在下过渡金属元素5个能量相等的d轨道和斓系、婀系7个能量相等的f轨道裂分,吸收辐射后,低能态的d电子或f 电子可以跃迁到高能态的d或f轨道上去。
绝大多数过渡金属离子都具有未充满的d轨道,按照晶体场理论,当它们在溶液中与水或其他配体生成配合物时,受配体配位场的影响,原来能量相同的d轨道发生能级分裂,产生d-d电子跃迁。
必须在配体的配位场作用下才可能产生,所以称为配位场跃迁;配体配位场越强,d轨道分裂能越大,吸收波长越短。
吸收系数。
max较小(102),很少用于定量分析;多用于研究配合物结构及其键合理论。
3紫外分光光度计的结构、特点、用途、应用范围3.1紫外可见分光光度计的结构【3】紫外可见分光光度计主要由辐射源、单色器、试样容器、检测器和显示装置等部分组成。
辐射源:必须具有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氖灯或氢灯(180~460纳米),或可调谐染料激光光源等。
单色器:它由人射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置。
其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。
试样容器:又称吸收池。
供盛放试液进行吸光度测量之用,分为石英池和玻璃池两种,前者适用于紫外到可见区,后者只适用于可见区。
容器的光程一般为0.5一10厘米。
检测器:又称光电转换器。
常用的有光电管或光电倍增管,后者较前者更灵敏,特别适用于检测较弱的辐射。
近年来还使用光导摄像管或光电二极管矩阵作检测器,具有快速扫描的特点。
显示装置:这部分装置发展较快。
较高级的光度计,常备有微处理机、荧光屏显示和记录仪等,可将图谱、数据和操作条件都显示出来。
3.2主要特点:3.2.1应用广泛在国际上发表的有关分析的论文中,光度法约占28% 。
由于各种各样的无机物和有机物在紫外一可见区域都有吸收,因此均可借此方法加以测定。
在食品行业,紫外可见分光光度计被广泛应用于食品检测之中,得到越来越多的重视。
3.2.2仪器价格相对低廉且分析成本低紫外可见分光光度计价格相对低廉,分析成本低,在使用过程中仪器几乎没有什么耗损。
食品企业大多属于中小企业,规模不大且利润薄,降低食品检测费用尤为重要,用紫外可见分光光度计作为主要检测仪器可以大大减轻企业检测成本紫外可见分光光度计具有灵敏度高、选择性好、准确度高、使用浓度范围广、分析成本低、操作简便、快速、应用广泛等特点。
3.23仪器类型:紫外可见分光光度计主要分为单波长单光束直读式分光光度计、单波长双光束自动记录式分光光度计和双波长双光束分光光度计三种类型。
3.2.4应用范围:紫外可见分光光度计主要应用范围有:定量分析、定性和结构分析、反应动力学研究、研究溶液平衡等。
定量分析:广泛用于各种物料中微量、超微量和常量的无机和有机物质的测定。
定性和结构分析:紫外吸收光谱还可用于推断空间阻碍效应、氢键的强度、互变异构、几何异构现象等。
反应动力学研究:研究反应物浓度随时间而变化的函数关系,测定反应速度和反应级数,探讨反应机理。
研究溶液平衡:如测定络合物的组成、稳定常3.2.5操作简便、快速【4】对一些保质期较短的食品检测要求操作简便、快速,比如鲜牛奶的保质期短(仅1天时间),对它的检测必须要求简便、快速,用紫外可见分光光度计就可以很好满足此要求。
3.2.6准确度高对于一般的分光光度法来说,浓度测量的相对误差在1 %-3%范围内,如采用示差分光光度法测量,则误差往往可减少到千分之几。
4紫外分光光度计在生物领域的应用4.1光度测量【5】在食品生产中为了保证有颜色的饮料(如可乐、果汁及茶饮料)产品的颜色一致,可以在可见光区用紫外可见分光光度计来测定其吸光度值,使色差符合产品要求。
在发酵业中也可通过测定吸光度值来确定产品的发酵完成程度。
对于一些成分比较单一的产品也可通过测定吸光度值来确定产品合格与否。
比如,判定营养增强剂维生素B1的质量就可以在400 nm下测定其吸光度值,当其值不超过0.020时,即可确定为合格品。
.2成分的定性分析物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有各自不同的分子·原子和不同的分子空间结构,其吸收光熊量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特性波长处的最大吸收峰(峰值)和波形图来判断某种物质是否存在。
在食品生产中会使用一些食品添加剂,为了确定食品添加剂的质量,可以用紫外可见分光光度计对其进行光谱扫描。
例如,对食品中涉及的一些复合甜味剂、复合防腐剂和复合鲜味剂等就可以用紫外可见分光光度计进行一个全面扫描以排除违禁添加剂的使用。
另外,此方法还可以在物质结构分析方面作为红外光谱(IR)、核磁共振((NMR)、质谱(MS)等方法的辅助手段。
4.2成分的定量分析【6】对于食品卫生安全检测中一些含量需要严格控制的成分项目可以用紫外可见分光光度计来准确检测。
食品中常用紫外可见分光光度计测定。
4.3 DNA/蛋白分析DNA/蛋白质为生物大分子,所产生的紫外光吸收往往是其分子内的小基团所引起的,例如嘌呤碱、嘧啶碱、酪氨酸、苯丙氨酸、色氨酸和肽键等。
嘌呤碱、嘧啶碱以及由它们参与组成的核昔、核苷酸及核酸对紫外光有强烈的吸收,在吸收波长260 nm处有最大吸收值。
在蛋白质分子中,酪氨酸(TYR)、苯丙氨酸(Phe)、色氨酸((Trp)残基的苯环含有共扼双键,该共扼双键对紫外光有吸收(其中最大吸收Tyr在吸收波长274 nm; Phe在吸收波长257 nm; Trp在吸收波长280 nm),从而导致蛋白质对紫外光有吸收。
肽键对紫外光的最大吸收在吸收波长238 nm。
利用这个特性可以准确、可靠地测定乳制品中蛋白质含量。
二、紫外可见分光光度法在共辘亚油酸定量分析中的应用【7】采用UV- 9100型紫外可见分光光度计,测定了由植物油脂制得的共扼亚油酸共扼亚油酸甲酯、共扼亚油酸三甘酯在不同浓度时在200nm- 300nm的吸光度,绘制出样品在不同浓度时的吸光度曲线,找出适宜的浓度范围,用Microcal Software Origin Version 4. 0做回归分析,由线性回归给出样品浓度和吸光度的线性关系,为对实验结果进行检验和校正,采用惠普8452A二极管阵列分光光度计测定了同一批样品在不同浓度范围内的吸光度,利用PEAutosystem XL- Turl>oMass 测得样品中共扼亚油酸准确浓度,结合回归系数给出了用紫外可见分光光度计快速测定样品中共扼亚油酸含量的经验公式。
4.4核酸分析工作中的应用【8】紫外可见分光光度计在氨基酸分析中的应用, 主要是用来对氨基酸的定量检测。
因为氨基酸对紫外光的主要吸收波长为230nm, 所以, 我们只要采用光度测量模式, 将紫外可见分光光度计仪器的波长GOTO 到氨基酸的最大吸收峰230nm 上, 就可测试其吸光度大小, 从而计算出氨基酸的含量。
但是, 因为氨基酸分析时, 一般是将它溶解在水中, 而水在230 nm 附近有很多干扰吸收线, 所以, 在用紫外可见分光光度计对氨基酸分析检测时, 要注意防止干扰的问题。
此外, 还需注意: 只有少数氨基酸有紫外吸收, 多数氨基酸无紫外吸收或很弱, 测定时要衍生化后再测。
4.5糖类分析测试工作中的应用紫外可见分光光度计在糖的分析中, 主要是作定量检测。
因为糖对紫外光的主要吸收波长为218nm, 所以, 对糖类进行分析时, 只要采用光度测量模式, 将紫外可见分光光度计仪器的波长GOTO 到氨基酸的最大吸收峰218 nm上, 就可测试其吸光度大小, 从而计算出糖的含量。
5紫外可见分光光度计在其他领域的应用5.1药品分析中的应用我国和世界上许多国家的药典都明确规定, 许多药品都要求用紫外可见分光光度计作质量控制。