用紫外分光光度计测定溶液溶度的实验步骤
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
紫外可见分光光度法测定苯酚含量的实验步骤紫外可见分光光度法是一种常用的分析方法,可用于测定无机和有机物质的浓度。
在本实验中,我们将利用紫外可见分光光度法测定苯酚的含量。
下面是实验步骤。
实验原理苯酚在紫外和可见光区都有吸收峰,根据它的吸收峰特征可以测定其含量。
在本实验中,我们将利用苯酚在240 nm处的吸收峰进行测定。
实验仪器、试剂以及玻璃仪器仪器:紫外可见分光光度计试剂:苯酚、甲醇玻璃仪器:比色皿、移液管、醇灯、玻璃棒、烧杯等。
实验步骤步骤1:制备苯酚样品溶液将1 g的苯酚粉末称到50 mL的烧杯中,加入约30 mL甲醇并混合均匀,然后用甲醇稀释到50 mL。
最后用玻璃棒搅拌至完全溶解。
步骤2:制备苯酚标准曲线将制备好的苯酚样品溶液定容到50 mL,在紫外可见分光光度计中,设置检测波长为240 nm,然后将苯酚标准溶液分别放入比色皿中,取0、0.2、0.4、0.6、0.8 mL苯酚标准溶液,然后用甲醇稀释成10 mL。
最后,利用紫外可见分光光度计测量各个标准溶液的吸光度。
步骤3:测定未知样品将待测样品取5 mL,加甲醇稀释成50 mL,然后放到紫外可见分光光度计中测量样品的吸光度。
根据标准曲线可以计算出样品中苯酚的含量。
注意事项1.制备苯酚样品溶液的时候,要充分混合均匀,防止苯酚沉淀。
2.操作过程中,不可碰触紫外光管等易损部件。
3.实验前,应进行紫外可见分光光度计的预热操作,以保证测试准确性。
实验结果及分析根据实验测定的吸光度可以绘制出苯酚标准曲线,通过计算未知样品的吸光度,即可求出其苯酚含量。
对测量的结果进行分析,可以了解到此方法的准确性和可行性。
总结本实验介绍了紫外可见分光光度法测定苯酚含量的实验步骤。
通过本实验的学习,不仅能够掌握该分析方法的原理、仪器和操作要点,还能够提高实验技巧,从而为今后的实验研究奠定基础。
一、实验目的本实验旨在通过化学和物理方法对淀粉进行定量测量,验证淀粉在不同条件下的溶解度、反应速度以及与特定试剂的反应特性。
通过对实验数据的分析,进一步了解淀粉的性质和变化规律。
二、实验原理淀粉是一种高分子碳水化合物,由大量葡萄糖单元通过α-1,4-糖苷键和α-1,6-糖苷键连接而成。
淀粉在水中溶解后,形成具有胶体性质的淀粉溶液。
本实验采用以下原理进行淀粉的定量测量:1. 淀粉的溶解度测定:通过测定不同温度下淀粉在水中的溶解度,了解淀粉溶解度随温度变化的规律。
2. 淀粉与碘的反应:淀粉与碘反应生成蓝色复合物,根据复合物的颜色深浅,可以测定淀粉的含量。
3. 淀粉与酶的反应:淀粉在淀粉酶的作用下水解生成葡萄糖,通过测定葡萄糖的生成量,可以计算淀粉的量。
三、实验材料与仪器材料:1. 淀粉2. 碘液3. 葡萄糖标准溶液4. 淀粉酶5. 碱性酒石酸铜溶液6. 碱性氢氧化钠溶液7. 温度计8. 移液管9. 比色皿10. 烧杯仪器:1. 恒温水浴锅2. 紫外可见分光光度计3. 电子天平4. 移液器四、实验步骤1. 淀粉溶解度测定:(1)称取一定量的淀粉,溶解于不同温度的水中。
(2)将溶液在恒温水浴锅中加热至所需温度,保持一定时间。
(3)取出溶液,室温下冷却至室温。
(4)用移液管取一定量的溶液,加入碘液,观察颜色变化。
(5)记录溶液颜色变化,并计算淀粉的溶解度。
2. 淀粉与碘的反应:(1)称取一定量的淀粉溶液,加入碘液。
(2)观察溶液颜色变化,记录颜色变化时间。
(3)根据颜色变化时间,计算淀粉的含量。
3. 淀粉与酶的反应:(1)称取一定量的淀粉溶液,加入淀粉酶。
(2)在恒温水浴锅中反应一定时间。
(3)取出溶液,加入碱性酒石酸铜溶液。
(4)用移液器取一定量的溶液,加入碱性氢氧化钠溶液。
(5)用紫外可见分光光度计测定溶液的吸光度。
(6)根据吸光度计算葡萄糖的生成量,进而计算淀粉的量。
五、实验结果与分析1. 淀粉溶解度测定:随着温度的升高,淀粉的溶解度逐渐增大。
分子光谱实训报告班级:----------------学号:_______________________ 姓名:______________________指导教师:_______________2015年10月紫外■可见分光光度计的检测实训日期______ 年_____ 月 ____ 日教师评定:________________【仪器概况】仪器名称:紫外-可见分光型号:UV1801厂家:北京瑞利编号:090953、【仪器结构】三、【实验项目】波长准确度检查仪器零点稳定性检查光电流稳定度检查吸光度准确度检查紫外区透色比检查杂散光合格性检查吸收池配套性检查皿差四、【仪器及试剂准备单】1、试剂清单(以1个小组6人为例)H2SO3、K2Cr3O7、HCI04、碘化钠、蒸馏水、亚硝酸钠、无水乙醇、苯、硫酸铜。
2、仪器清单(以1个小组6人为例)UV1801紫外分光光度计、烧杯14个、容量瓶9个、玻璃棒、滤纸、洗瓶、错钕滤光片、比色皿、胶头滴管、洗耳球、移液管、表面皿、移液管架。
五、【检测步骤】开机自检(5个ok)(一)、波长准确度可见分光光度(空气)1 、按1、波长扫描;按F1,参数设置(E、波长范围460--680nm、间隔0.1nm、换灯点800nm)按返回键。
2 、按F2,根据显示屏提醒,确定键;出现两个峰,分别记录两个峰值的波长和吸光值。
(重复3次;参比和样品都是空气)。
错钕滤光片1 、按F1,参数设置(A、波长范围500--540nm、间隔1nm换灯点360nm)按返回键。
2 、把错钕滤光片放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现一个峰,记录读数。
紫外分光光度1 、按F1,参数设置(A、波长范围200--270nm、间隔0.1nm、换灯点360nm)按返回键。
2 、力口3滴苯在石英比色皿中,盖上比色皿盖,放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现五指峰,分别记录五个不同峰的波长和吸光值。
UV2600型紫外分光光度计操作规程一、开机1.打开仪器电源。
2.打开电脑,点击UV Analyst 进入光谱分析软件。
3.软件将自动搜索仪器端口,点击“联机”,软件与仪器联机成功。
二、选择测试模式根据实验需求选择测试模式。
仪器提供的测试模式有“波长扫描”“时间扫描”“定点测量”“定量测量”“核酸测量”和“蛋白质测量”【波长扫描】主要用以检测样品对一定范围波长光的吸收情况,以便对样品进行定性测量。
1.点击左侧主功能栏中的“波长扫描”即可进入波长扫描界面。
2. 根据实验要求,在“设置”设定检测参数。
3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。
4. 点击“基线测量”以扣除空白的背景吸收。
5. 将检测光路中的空白溶液换成待测样品。
6. 点击“扫描”。
以完成样品波长扫描检测。
7. 点击“保存”并选择保存路径即可保存谱图。
注意:在“基线测量”中所选择的基线必须与参数设置中基线一致!【时间扫描】是检测样品在特定波长范围内吸光度(或透过率)随时间的推移而发生变化情况。
主要用以检测样品的稳定性或进行化学动力学研究。
1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。
2. 根据实验要求,在“设置”设定检测参数。
3 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。
4. 点击“基线测量”以后扣除样品空白的背景吸收。
5. 将检测光路中的空白溶液换成待测样品。
6. 点击“扫描”。
以完成样品波长扫描检测。
7. 点击“保存”并选择保存路径即可保存谱图。
【定点测量】是检测样品在特定波长中的吸光度(或透过率)。
1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。
2. 根据实验要求,在“设置”设定检测参数。
3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。
4. 点击“自动校零”,以扣除该波长中空白溶液的背景吸收。
5. 将检测光路中的空白溶液换成待测样品。
6. 点击“测量”,以完成样品的吸光度(或透过率)的测量。
溶出度测定实验报告(共4篇)溶出度实验数据处理溶出度实验数据处理1.绘制标准曲线2.根据回归方程,计算样品的浓度和溶出百分率3.求溶出累积百分数根据单指数函数公式处理Y=Y∞(1-ekt)式中Y为t时间累积释放百分率,Y∞为相当长时间药物累积释放度(通常为100%),上式整理后得:Log(Y∞-Y)=LogY∞-kt/2.303 即Log(Y∞-Y)对t呈直线关系。
试片药物释放常数k为.......;50s释放百分率为.....代入公式计算得50s累积释放百分率为83.28%.篇二:实验十溶出度检查实验十溶出度检查一、实验目的1、掌握用转篮法测定片剂溶出度的操作步骤、结果计算和判断标准2、熟悉溶出度测定仪的使用方法3、巩固紫外-可见分光光度计的正确使用二、实验原理溶出度系指药物从片剂、胶囊剂或颗粒剂或固体制剂在规定条件下溶出的速度和程度。
凡检查溶出度的制剂,不再进行崩解时限的检查。
A?溶出度(%)?1?D?1000100?100% 1%E1?Scm按中国药典的规定,判断是否合格。
规定限度(Q)为标示量的75%。
三.实验仪器和试剂:1.仪器:溶出度仪、紫外-可见分光光度计、超声仪、注射器、微孔滤膜、吸量管、烧杯、2.试药:吡哌酸片(规格0.25g)四、实验内容:1. 溶出度仪调试:对溶出度仪器装置进行调试,使桨叶底部距离溶出杯的内底部15mm±2mm。
2. 溶出度测定:取供试品6片,分别投入6个转篮内,奖转篮降入容器内,开始计时。
经30分钟时,取溶液滤过,精密量取续滤液2ml,加0.04%氢氧化钠溶液稀释成100ml,摇匀;照紫外分光光度法在273nm 的波长处测定吸光度,计算含量与溶出度。
按吡哌酸的吸收系数(E 1%1cm)为1339计算每片的溶出度。
五、结果和分析1. 结果2. 结果判断符合下列条件之一者判为合格。
(1)6片中,每片的溶出量按标示量计算,均不低于规定限度(Q)。
(2)6片中,如有1~2片低于Q,但不低于Q -10%,且其平均溶出量不低于Q;(3)6片中,有1~2片低于Q,其中仅有1片低于Q -10%,但不低于Q -20%,且其平均溶出量不低于Q时,应取6片复试;初、复试的12片中,有1~3片低于Q,其中仅有1片低于Q -10%,但不低于Q -20%,且其平均溶出量不低于Q。
紫外分光光度计:工作原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。
因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。
分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。
又因为许多物质在紫外-可见光区有特征吸收峰,所以可用紫外分光光度法对这些物质分别进行测定(定量分析和定性分析)。
紫外分光光度法使用基于朗伯-比耳定律。
利用物质的分子或离子对某一波长范围光的吸收作用,对物质进行定性、定量分析以及结构分析。
紫外分光光度法首先确定实验条件,并在此条件下测得标准物质的吸收峰以及其对应波长值(同时可获得该物质的最大吸收波长);再在选定的波长范围内(或最大波长值处),分别以(不同浓度)标准溶液的吸光度和溶液浓度为横、纵坐标绘出化合物溶液的标准曲线得到其所对应的数学方程;接着在相同实验条件下配制待测溶液,测得待测溶液的吸光度,最后用已获得的标准曲线方程求出待测溶液中所需测定的化合物的含量。
使用范围:凡具有芳香环或共轭双键结构的有机化合物,根据在特定吸收波长处所测得的吸收度,可用于药品的鉴别、纯度检查及含量测定。
分光光度法只适用于微量组分的定量分析(稀溶液,浓度在线性范围内,(c <0.01 mol/L),浓溶液中光吸收定律将发生偏离,最适宜的吸光度测量范围为0.2-0.8之间(此时误差小)。
波长范围:可见-紫外分光光度计。
其应用波长范围为200~400nm的紫外光区、400~850nm的可见光区。
主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。
光源:在仪器的波长范围内提供足够的、稳定的连续的光。
紫外-可见分光光度计的检测实验报告分子光谱实训报告班级:————学号:姓名:指导教师:2015年10月紫外-可见分光光度计的检测实训日期______年_____月_____日教师评定:______________ 【仪器概况】仪器名称:紫外-可见分光光度计型号:UV1801厂家:北京瑞利分析仪器公司编号:090953二、【仪器结构】三、【实验项目】波长准确度检查仪器零点稳定性检查光电流稳定度检查吸光度准确度检查紫外区透色比检查杂散光合格性检查吸收池配套性检查皿差四、【仪器及试剂准备单】1、试剂清单(以1个小组6人为例)H2SO3、K2Cr3O7、HClO4、碘化钠、蒸馏水、亚硝酸钠、无水乙醇、苯、硫酸铜。
2、仪器清单(以1个小组6人为例)UV1801紫外分光光度计、烧杯14个、容量瓶9个、玻璃棒、滤纸、洗瓶、镨钕滤光片、比色皿、胶头滴管、洗耳球、移液管、表面皿、移液管架。
五、【检测步骤】开机自检(5个ok)(一)、波长准确度可见分光光度(空气)1、按1、波长扫描;按F1,参数设置(E、波长范围460--680nm、间隔0.1nm、换灯点800nm)按返回键。
2、按F2,根据显示屏提醒,确定键;出现两个峰,分别记录两个峰值的波长和吸光值。
(重复3次;参比和样品都是空气)。
镨钕滤光片1、按F1,参数设置(A、波长范围500--540nm、间隔1nm、换灯点360nm)按返回键。
2、把镨钕滤光片放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现一个峰,记录读数。
紫外分光光度1、按F1,参数设置(A、波长范围200--270nm、间隔0.1nm、换灯点360nm)按返回键。
2、加3滴苯在石英比色皿中,盖上比色皿盖,放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现五指峰,分别记录五个不同峰的波长和吸光值。
(二)、透射比的准确度将参比溶液0.001mol/L高氯酸加入石英比色皿3/4处(润洗3次)放在第一格;将测定液重铬酸钾加入石英比色皿3/4处(润洗3次)放在第二格;调节测量方式T;返回主页面,按2,光度测量;按F1,参数设置(换灯点360nm、波长数4个,入分别调到235nm、257nm、313nm、350nm);按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;记录读数。
紫外分光光度计常用于测量溶液中的化学物质的浓度。
为了获得准确的浓度值,需要制作一条标准曲线,以将样品的吸光度与浓度之间的关系建立起来。
以下是紫外分光光度计中标准曲线的制作步骤的简要说明:
1. 准备标准溶液:根据需要测定的化学物质,准备一系列已知浓度的标准溶液。
这些溶液应覆盖预期浓度范围,并涵盖吸光度变化较大的区域。
2. 测定吸光度:使用紫外分光光度计,依次测定每个标准溶液的吸光度值。
选择适当的波长进行测量,确保所选波长适合目标化学物质的最大吸收波长。
3. 绘制标准曲线:将每个标准溶液的浓度值与其相应的吸光度值配对。
在坐标纸上绘制浓度-吸光度的散点图。
通常,浓度值位于X轴,吸光度值位于Y轴。
4. 进行曲线拟合:根据实验数据,选择合适的曲线拟合方法。
常见的拟合方法包括线性拟合、对数拟合、指数拟合等。
根据样本数据的分布情况,选择最适合的拟合函数,通过最小二乘法拟合出最佳拟合曲线。
5. 确定分析样品的浓度:根据分析样品的吸光度值,使用标准曲线确定其对应的浓度。
将样品的吸光度值代入标准曲线方程,计算出相应的浓度值。
6. 验证和验证:对标准曲线进行验证和验证,确保其准确性和可靠性。
可通过再测定标准溶液或使用其他方法验证
标准曲线的可重复性和精确性。
制作标准曲线是紫外分光光度计分析的重要步骤,它提供了测量样品浓度的基准,并在分析中提供准确和可靠的结果。
制作标准曲线需要注意溶液的制备、仪器的校准和标定,以及数据的准确性和拟合方法的选择等因素。
UV-2550型紫外分光光度计使用说明1开机预热1.1先打开电脑显示器和主机,再打开仪器的电源,打开桌面上软件UVProbe2.21,单击,出现如下对话框(UV-2550PC Series-Rev.A(FD 00)):仪器进入初始化状态。
1.2初始化大约需要5min,进行一系列的机械和光路的检查和初置,当所有项目初始化完毕后,单击1.3初始化完成后,需预热15min,即可往下操作。
2基线校正2.1选择中的(photometric光度),打开光度模块。
2.2单击光度计键条中的(baseline基线),启动基线校正操作。
2.3当基线参数对话框(baseline Parameters)弹出时:在开始波长和结束波长中分别输入实验所需的波长范围内进行基线校正,点击在Start中输入700,在End700nm开始扫描。
2.4待扫描结束后,点击输出窗口校正信息。
注意在基线校正过程中光度计状态窗口的读数变化,读数变化≤3nm可接受。
当完成基线校正后,可进行以下操作。
3光度测定3.1首先选择测定方式,在主菜单的所示的各键中,选择(photometric 光度)。
3.2 参数的设置(以硝酸盐为例说明):点击菜单栏中的键,出现图(photometric Method Wizard-[Wavelengths]:在)中可供选择在538,WL538.0,点击加入,点下一步,出现图(photometric Method Wizard-[Calibration]):Multi Point,Single Point,K-Factor,wavelength,Ratio,Different)中选择步添加过的波长,例如的单位。
单击下一步;出现下图(标准表):一般选择默认状态,其中表示在重复测定之前进行提示。
再单击下一步;出现下图(样品表):和上面类似,用默认设置即可。
再单击下一步,出现下图(Photometric metricWizard-[File Properties]):在下,单击完成。
溶解度的测定实验报告篇一:CO2在水中溶解度的测定实验报告CO2在水中溶解度的测定1.取2000ml蒸馏水,加热至沸腾,加盖放置到室温,备用。
2.制备Ca(OH)2饱和溶液:取11.1gCaCl2和8.0gNaOH,将二者放入500ml大烧杯中,加煮沸的蒸馏水500ml,用玻璃棒搅拌,加盖放置过夜,取上层清液备用。
3.将800ml煮沸过的蒸馏水放入1000ml带塞广口瓶中。
如图连接实验装置。
锥形瓶A中放入适量煮沸过的蒸馏水,取10.6gNa2CO3和10ml 2%的HCl溶液,将NaCO3放入吸滤瓶中,在吸滤瓶上方放置一只长颈漏斗,迅速将HCl溶液倒入漏斗中,待导管另一端有气流流出时,将橡胶管插入盛有800ml水的广口瓶中,插入水中的导管一端有气泡冒出。
待碳酸钠和盐酸反应结束,拆除吸滤瓶,保留锥形瓶A,静置10分钟,把导管移动到水面上方,在A中加入4gNaOH,以吸收广口瓶水面上方未被水吸收的二氧化碳气体,再静置10分钟。
拆除锥形瓶A,广口瓶塞上胶塞。
4.取下广口瓶上的胶塞,迅速将150ml氢氧化钙饱和溶液倒入广口瓶中,再迅速盖上胶塞。
5.倒入饱和氢氧化钙溶液后,溶液中有颗粒状沉淀产生。
静置,过夜。
6.静置过夜后,广口瓶底有薄薄的白色沉淀,上层为澄清液体。
小心地迅速地将上层清液倒出,注意不要干扰到底层沉淀。
倒至底层液体约有3-4cm时,停止。
7.准备漏斗和滤纸,过滤剩余液体和沉淀。
用煮沸过的蒸馏水反复洗涤滤纸,以洗去附着在碳酸钙上的氢氧化钙。
8.取滤纸放入大烧杯中,在烧杯中滴加10ml36%的盐酸,轻轻摇晃烧杯使沉淀溶解。
用镊子将滤纸取出。
9.将烧杯中的液体放入100ml容量瓶中,反复洗涤烧杯。
用煮沸过的蒸馏水定容。
10.取适量氯化钙放在蒸发皿上,放入炉中,调节炉内温度至200摄氏度,烘干一小时。
11.取出烘干的氯化钙,称取氯化钙试剂2g,放入1L的容量瓶中,加入100ml36%的盐酸,用煮沸过的蒸馏水定容。
紫外分光光度法测硝酸盐
紫外分光光度法测定硝酸盐原理
紫外分光光度法是一种基于样品对特定波长光的吸收量和浓度之间的线性关系来测定物质浓度的分析方法。
对于硝酸盐的测定,其原理是基于硝酸盐在紫外光范围内(约220 nm)具有特征性吸收峰。
当紫外光照射到硝酸盐溶液时,硝酸盐分子会吸收特定波长的光,导致溶液对该波长光的透射率下降。
通过测量溶液在特定波长下的吸光度,可以定量测定硝酸盐的浓度。
试剂和仪器
待测硝酸盐溶液
硝酸盐标准溶液
紫外分光光度计
1 cm 石英比色皿
步骤
1. 绘制标准曲线:使用已知浓度的硝酸盐标准溶液,分别配制一系列浓度梯度的标准溶液。
将这些标准溶液依次装入比色皿中,在紫外分光光度计上扫描 190-250 nm 范围内的吸光度。
记录每个标准溶液在 220 nm 处的吸光度,并将吸光度值与相应的硝酸盐浓度绘制成标准曲线。
2. 样品测定:将待测硝酸盐溶液装入比色皿中,并在紫外分光光度计上扫描 190-250 nm 范围内的吸光度。
记录样品溶液在 220 nm 处的吸光度。
3. 浓度计算:将样品溶液在 220 nm 处的吸光度代入标准曲线方程,即可计算出样品中硝酸盐的浓度。
注意事项
紫外分光光度法测定硝酸盐时,样品溶液的 pH 值应控制在
2-3 之间。
比色皿和参比溶液需要匹配,以消除仪器的基线漂移。
标准溶液和样品溶液的温度应保持恒定,以避免吸光度随温度变化产生的误差。
紫外光对人体有害,实验操作时应佩戴防护手套和眼镜。
实验报告DNA提取与纯化一、实验目的本次实验的主要目的是从给定的生物样本中提取并纯化 DNA,以获取高纯度、高质量的 DNA 样品,为后续的分子生物学实验,如 PCR 扩增、基因测序等提供可靠的材料。
二、实验原理DNA 存在于细胞核内,与蛋白质等物质结合形成染色质。
在提取过程中,需要通过细胞裂解、去除蛋白质和其他杂质等步骤来分离DNA。
细胞裂解可以使用物理方法(如研磨、超声破碎)或化学方法(如使用裂解液)。
去除蛋白质常用的方法有蛋白酶 K 消化和酚/氯仿抽提。
DNA 在一定浓度的盐溶液中可溶解,而在乙醇中会沉淀,利用这一特性可对其进行纯化。
三、实验材料与试剂(一)实验材料新鲜的动物组织(如肝脏、肌肉)或植物叶片。
(二)实验试剂1、细胞裂解液:包含 TrisHCl、EDTA、SDS 等成分,用于破坏细胞膜和核膜,释放 DNA。
2、蛋白酶 K:能分解与 DNA 结合的蛋白质。
3、酚/氯仿/异戊醇混合液:用于去除蛋白质。
4、无水乙醇、70%乙醇:用于沉淀和洗涤 DNA。
5、 NaCl 溶液:提供适当的离子强度。
6、 TE 缓冲液(TrisEDTA 缓冲液):用于保存 DNA。
(三)实验仪器1、离心机2、移液器3、恒温水浴锅4、涡旋振荡器5、冰箱6、紫外分光光度计四、实验步骤(一)样本处理1、动物组织:将新鲜的动物组织剪碎,放入匀浆器中,加入适量的裂解液,匀浆至组织完全破碎。
2、植物叶片:取适量新鲜叶片,液氮研磨成粉末,加入裂解液。
(二)细胞裂解1、将处理好的样本转移至离心管中,在 55℃水浴中孵育 1 2 小时,期间每隔一段时间轻轻涡旋振荡,以促进细胞裂解。
(三)去除蛋白质1、加入蛋白酶 K,使其终浓度达到一定值,在 55℃继续孵育 1 2小时。
2、冷却至室温后,加入等体积的酚/氯仿/异戊醇混合液,充分混匀,然后在离心机中以一定的转速离心一定时间。
3、吸取上清液至新的离心管中,重复酚/氯仿抽提步骤 1 2 次,直至中间层无白色蛋白质沉淀。
紫外-可见分光光度法标准操作程序1 简述紫外-分光光度法是通过被测物质在特定波长处或一定波长长范围内的吸光度或发光强度,对该物质进行定性和定量分析的方法。
本法的在药品检验中主要用于药品的鉴别、检查和含量测定。
定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或百分吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若化合物本身在紫外光无吸收,而杂质在紫外光区有相当强度的吸收,或杂质的吸收峰化合物无吸收,则可用本法作检查。
物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生的。
因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。
有机化合物分子结构中如含有共轭体系、芳香环或发色基团,均可在近紫外区(200-400nm)或可见光区(400-850nm)产生吸收。
通常使用紫外分光光度计的工作波长范围为190-900nm,因此又称紫外-可见分光光度计。
紫外吸收光谱为物质对紫外区辐射的能量吸收图。
朗伯-比尔(Lambert-beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为:A=log1/T=ECL式中A为吸光度;T为透光率;E为吸收系数;C溶液浓度;L为光路长度。
如溶液的浓度(C)为1%(g/ml),光路长度(L)为1cm,相应的吸收系数为百分吸收系数,以E 表示。
如溶液的浓度(C)为摩尔浓度(mol/L),液层厚度为1cm时,则相应有吸收系数为摩尔吸收系数,以ε表示。
2 仪器紫外-可见分光光度计:主要由光源、单色器,样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。
为了满足紫外-可见光区全波长范围的测定,仪器备有二种光源,即氘灯和碘钨灯,前者用于紫外区,后者用于可见光区。
单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件、聚焦透镜或反射镜等组成。
色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。
分光光度计的原理与使用一、目的要求:1、学会紫外-可见分光光度计的原理和使用方法2、学会测量溶液的浓度.二、实验原理:1、分光光度计原理:分光光度计是目前化验室中使用比较广泛的一种分析仪器,其测定原理是利用物质对光的选择性吸收特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而确定溶液中物质的含量.其特点是灵敏度高;准确度高;测量范围广;在一定条件下,可同时测定水样中两种或两种以上的物质组分含量等.分光光度计按其波长范围可分为可见分光光度计〔工作范围360~800nm〕、紫外-可见分光光度计〔工作范围200~1000nm〕和红外分光光度计〔工作范围760~400000nm〕等.2、在日常使用与维护当中应注意以下几点:第一,在使用仪器前,必须仔细阅读其使用说明书.第二,若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零与满度后,再测量.第三,指针式仪器在未接通电源时,电表的指针必须位于零刻度上.若不是这种情况,需进行机械调零.第四,操作人员不应轻易触动灯泡与反光镜灯,以免影响光效率.第五,放大器灵敏度换挡后,必须重新调零.第六,比色皿使用时要注意其方向性,并应配套使用,以延长其使用寿命.新的比色皿使用前必须进行配对选择,测定其相对厚度,互相偏差不得超过2%透光度,否则影响测定结果.使用完毕后,请立即用蒸馏水冲洗干净〔测定有色溶液后,应先用相应的溶剂或〔1+3〕的硝酸进行浸泡,浸泡时间不宜过长,再用蒸馏水冲洗干净〕,并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率.第七,比色皿架与比色皿在使用中的正确到位问题.首先,应保证比色皿不倾斜.因为稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还有可能使入射光不能全部通过样品池,导致测试准确度不符合要求.其次,应保证每次测试时,比色皿架推拉到位.若不到位,将影响到测试值的重复性或准确度.第八,干燥剂的使用问题.干燥剂失效将会导致以下问题:①数显不稳,无法调零或满度.②反射镜发霉或沾污,影响光效率,杂散光增加.因此分光光度计应放置在远离水池等湿度大的地方,并且干燥剂应定期更换或烘烤.第九,分光光度计的放置位置应符合以下条件:避免阳光直射;避免强电场;避免与较大功率的电器设备共电;避开腐蚀性气体等.3、吸光光度法测定溶液浓度原理基于物质对不同波长的光波具有选择性吸收的能力而建立起来的分析方法. 〔1〕光线:光线的波长: 200nm-400nm 紫外线,400-750nm可见光, >750nm 红外线光具有波粒二相性,波长不同,其能量不同.〔2〕物质的吸收光谱与颜色:A.物质的原子吸收光谱和原子发射光谱:原子的最外层电子可以选择性吸收特征波长的电磁波成为激发态而产生的光谱称为原子吸收光谱.激发态原子恢复到基态,则释放出特征波长的光子,形成原子发射光谱.不同的溶液其光谱不同,即不同溶液对不同波长的光其吸收能力不同,对某一特定波长的光存在吸收峰. B.可见光由赤橙黄绿青兰紫等能量不同的光线组成,当可见光穿过某一溶液时,由于特定波长的光被吸收而使溶液呈现相应的颜色.〔如CuSO4由于吸收了可见光中的黄光<600nm>而成蓝色〕不同颜色的溶液对不同波长的光其吸收能力不同. 〔3〕光吸收的基本定律〔Lambert-Beer 定律〕:一束平行单色光〔Io〕通过有色的透明溶液时,一部分的光可以透过溶液〔It〕,另一部分被溶液吸收〔Ia〕,还有一部分被器皿表面反射〔Ir〕,则:Io=It+Ia+Ir .那么,该溶液透光率为: T = It / Io .1. Lambert 定律:设有一束平行单色光,通过液层厚度为b 的均匀透明溶液,则溶液对光的吸收能力:A=Ig<Io/It>=Ig<1/T>=k2bk2 为吸光系数,为常数.与入射光波长、溶液性质、浓度和温度有关;A 为吸光度〔又称光密度O.D 或消光度E〕,当入射光波长、吸光溶液的浓度和温度一定时,A 与b 成正比.2. Beer 定律:设有一束平行单色光,通过浓度为c 的均匀透明溶液,则溶液对光的吸收能力:A=lg<Io/It>=Ig<1/T>=k4ck2 为常数.由Beer 定律可知:当入射光波长、吸光溶液的厚度和温度一定时,A 与c 成正比.3. Lambert-Beer 定律:综合1.2.得: A=Kbc ,即:当入射光波长、吸光溶液的性质和温度一定时,A 与b、c 成正比.〔4〕吸光光度法的基本原理:1、不同物质,由于其分子结构和原子组成不同,故对光的吸收光谱不同〔如:CuSO4〕,在测定不同颜色的物质浓度时要用最大吸收的波长的入射光,这样测量的灵敏度最高.2、同一种物质,若浓度不同,则对同一波长的入射光的吸收能力〔吸光度〕也不同,且成正比关系.3、应此,利用特定波长的单色光〔通常用最大吸收波长的入射光〕照射不同浓度的某一溶液时,所得的吸光度大小应与溶液浓度呈线性关系,故可利用该线性关系通过计算或查标准曲线来求得未知溶液的浓度.〔5〕吸光光度法特点:1.灵敏度高:mg%级、甚至ug%级.2.准确度高:误差2-5%3.操作简便、快速,仪器设备不复杂,价格低廉,故应用广泛.三、实验器材:UV2000分光光度计四、实验步骤〔一〕 UV2000 型分光光度计的使用与注意事项1、插上插头,接通电源,打开暗箱盖,预热20min.* 注意:分光光度计在接通电源而不用时,必须打开暗箱盖,以免光电管老化.2、将准备好的试剂倒入比色杯中,用吸水纸擦去比色杯外侧水珠,并依次放入比色杯架中.* 注意:手拿比色杯毛面,试剂倒入杯中满2/3 即可,不得将比色杯放在仪器上.3、调节所需波长,选择功能至"T".4、调"0":放入挡光板,按调"0"键调节.5、调"100%":取出挡光板,盖上暗箱盖,调"100%",让光线通过"空白管".6、重复调"0"和调"100%"数次.7、将选择键由"T"调至"A",此时读数应由"100"至"0",若不为"0",可用"0%"键调节.8、拉动拉杆,分别读取"A 标"和"A 样".9、取出比色杯,弃去溶液,洗净晾干,备用.〔二〕计算1.利用标准管计算测定物含量:A 样=K 样b 样c 样A 标=K 标b 标c 标因为入射光的波长,溶液性质和温度以与比色杯的厚度都一样,即:K 样=K 标 b 样=b 标所以:A 样/ A 标= c 样/ c 标得:c 样= c 标×A 样/ A 标2.利用标准曲线进行计算:3.偏离Lambert-Beer 定律的原因1〕由于非但色光引起的偏离.2〕由于溶液本身原因引起的偏离:①由于介质不均匀引起的偏离②由于溶液中化学反应引起的偏离浓度的测定〔三〕CuSO4比色波长=650nm按上述操作步骤测定硫酸铜溶液A 样和A 标,按下式计算样品浓度:C 样 = C 标 * A 样 / A 标五、结果与思考1、如果用标准曲线法测定硫酸铜溶液浓度,该如何设计实验?2、分光光度计的维护要注意什么?3、比较各种分光光度计的使用范围.。
实验一紫外分光光度法测定苯甲酸一、实验目的学习、了解紫外分光光度法原理了解紫外分光光度计的结构和使用方法二、实验原理当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。
分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。
分子吸收光谱的强度与吸光物质的浓度有关。
表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。
根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。
即A= LC因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。
在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。
因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。
三、仪器与主要试剂TU-1810紫外可见分光光度计1cm石英比色皿0.1M氢氧化钠溶液苯甲酸(AR)四、实验步骤1、苯甲酸标准溶液的制备称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml 溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg苯甲酸.2、制作苯甲酸吸收曲线,选择最大吸收波长①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug.以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度.②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线, 并找出最大的吸收波长(是否是225nm).3﹑样品的测定①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀.②在上述曲线中所找到的最大吸收波长作为入射光波长,以0.01M 氢氧化钠溶液作为参比,在上述相同条件下测出苯甲酸标准溶液(8ug/ml苯甲酸)和稀释好的样品的吸光度,分别记录.五、分析结果计算计算样品液中苯甲酸的浓度C样/C标=A样/A标六、思考题1、比较TU-1810与722S型分光光度计机构有何异同点?2、本实验为什么要使用石英比色皿?3、使用紫外光源(氘灯)应注意些什么?THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
用紫外分光度计测定溶液的浓度
一、实验材料与仪器
罗丹明B,蒸馏水,紫外分光度计,10ml比色皿(2个),250ml容
量瓶,烧杯,移液管,比色管(若干)
二、实验步骤
① 用称量纸称取0.0025g的罗丹明B,放入烧杯中加入适量的蒸馏水
溶解,并用玻璃棒搅拌均匀,然后转入250ml容量瓶中,贴上标
签待用(此时的溶液的溶度为10mg/L)。
② 取5支25ml的比色管,用量液管分别加入1.00,2.00,3.00,4.00,
5.00ml的已配好的罗丹明B溶液。然后加入蒸馏水稀释至10ml,
此时的比色管中溶液的浓度分别为1,2,3,4,5mg/L。
③ 打开紫外分光光度计,预热30分钟,让机器稳定下来,然后以蒸
馏水作为参比溶液,加入比色皿中(适量),然后用吸水纸把比色
皿表面的溶液吸干,放入五联池中,盖上盖,在电脑界面上点击,
“基线”图标,进行消除基线,由于罗丹明B的最大吸收峰为554,
故把波长扫描范围定在400~650nm。
④ 消除基线后,取出盛参比溶液的比色皿,把未知浓度的溶液加入
比色皿中,用紫外分光光度计进行测定。
三、数据处理与matlab绘图
x=1:5;
y=[0.242 0.507 0.788 1.044 1.254]
p=polyfit(x,y,1);
xi=0:6;
yi=polyval(p,xi);
plot(x,y,'ob',xi,yi,'r')
ylabel('吸光度值')
xlabel('罗丹明B的浓度(mg/L)')
0123456
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6罗丹明B的浓度(mg/L)吸光度值
实际值点
拟合曲线