NUMERICAL WAVE FLUME WITH IMPROVED SMOOTHED PARTICLE HYDRODYNAMICS
- 格式:pdf
- 大小:489.46 KB
- 文档页数:9
专利名称:一种基于改进萤火虫算法优化粒子滤波的轨迹预测的方法
专利类型:发明专利
发明人:吴学礼,高锋,甄然
申请号:CN201910587699.9
申请日:20190702
公开号:CN110348560A
公开日:
20191018
专利内容由知识产权出版社提供
摘要:本发明涉及一种基于改进萤火虫算法优化粒子滤波的轨迹预测的方法,在原始萤火虫算法的基础上,提出萤火虫算法新的位置更新策略和变步长策略,然后结合粒子滤波算法的运行机制用改进的萤火虫算法优化粒子滤波算法,然后将其应用在空域飞行目标轨迹预测中。
在位置更新策略中采用全局优化思想,改善了粒子贫化现象,避免了计算的复杂度;在步长策略中改变传统算法中定步长的思想,利用非线性方程设计了步长动态调整方案,平衡了全局搜索和局部开发的能力。
申请人:河北科技大学
地址:050000 河北省石家庄市裕华区裕翔街26号
国籍:CN
代理机构:石家庄新世纪专利商标事务所有限公司
代理人:张一
更多信息请下载全文后查看。
一种新颖的在线监测仪器--离子流动光谱仪
佚名
【期刊名称】《光谱学与光谱分析》
【年(卷),期】2002(022)006
【摘要】离子流动光谱仪(IMS)体积小,重量轻,耗能少,价格便宜,灵敏度高, 适用范围广,能用于在线分析,是一种前景广阔的监测仪器.但有关的报道在国内却很少,本文介绍了它的基本原理、仪器构造、特点,局限性以及与色谱和质谱的连用,向小型化发展的方向.从德国光谱化学与应用光谱学研究所在此方面所作的工作讨论了离子流动光谱仪在爆炸物监控、化学武器鉴定、毒品稽查以及在线工业分析和环境监测中的应用.
【总页数】5页(P1025-1029)
【正文语种】中文
【中图分类】O657
【相关文献】
1.一种用于测定痕量铜离子的流动注射在线富集等离子体炬原子发射光谱法 [J], 李永生;赵博;孙旭辉
2.新颖在线痕量钠离子分析仪的研制 [J], 承慰才;崔晓凤;柴颖
3.一种新颖的在线自校正死区补偿策略 [J], 汪宝龙;高艳霞;杨根胜
4.痕量钼的在线离子交换预浓缩流动注射—电感耦合等离子体光谱测定 [J], 郭雷;张桂兰
5.一种在线液-液萃取微型多用分相器的设计和应用Ⅳ.流动注射液-液萃取电感耦合等离子体原子发射光谱法测定矿石中稀土元素 [J], 徐志方;林守麟
因版权原因,仅展示原文概要,查看原文内容请购买。
基于量化测量的前向-后向箱粒子平滑器
孙文
【期刊名称】《电子技术应用》
【年(卷),期】2022(48)5
【摘要】提出了一种新的前向-后向箱粒子平滑算法。
在正向过程中,使用标准的箱粒子滤波算法。
在后向过程中,使用箱粒子近似平滑后验概率。
提出了一种额外的箱粒子移动步骤,使箱粒子在目标周围集中。
通过量化测量下的仿真,验证了所提算法的性能优势。
【总页数】5页(P114-118)
【作者】孙文
【作者单位】中国西南电子技术研究所
【正文语种】中文
【中图分类】TN911.7
【相关文献】
1.粒子加速器——基于积分束流变压器的加速器束团电荷量测量系统
2.基于重采样平滑粒子滤波的检测前跟踪
3.基于 GM-PHD 平滑器的检测前跟踪技术∗
4.基于粒子图像测速技术的流浆箱阶梯扩散器性能试验
5.基于区间箱粒子多伯努利滤波器的传感器控制策略
因版权原因,仅展示原文概要,查看原文内容请购买。
现代电子技术Modern Electronics TechniqueDec. 2023Vol. 46 No. 242023年12月15日第46卷第24期0 引 言随着我国经济的发展,木材的消耗量逐渐增加,需求量也日益增长。
根据中国森林资源清查数据官网显示,2018年第九次全国森林覆盖率只达到了22.96%,木材利用率平均只有65%左右,但一些发达国家能达到80%的利用率[1],从数据中可以看出木材资源在我国仍然比较贫乏[2]。
由于树木在生长过程中会出现腐朽、空洞等不良情况,若砍伐后才发现则浪费更多的资源。
虽然树木具有天然再生的特性,但更新周期较长,人工种植的树木从种植到成材使用需要很长时间,天然树木生长周期比人工种植要更久一些。
因此,如何提高木材的利用率成为了人们的研究重点。
常见的活立木无损检测方法[3]有:目测法[4‐5]、应力波法[6]、超声波法[7]、X 射线法[8]等。
超声波法在检测时需要将树皮剥去,容易造成树木被感染;应力波法在识别细微缺陷时精度较低;DOI :10.16652/j.issn.1004‐373x.2023.24.011引用格式:左瑞雪,韩仲鑫.基于电阻抗成像的立木无损检测系统[J].现代电子技术,2023,46(24):61‐66.基于电阻抗成像的立木无损检测系统左瑞雪, 韩仲鑫(南京邮电大学 自动化学院、人工智能学院, 江苏 南京 210023)摘 要: 为及时监测树木内部结构状态,提出一种基于电阻抗成像理论的活立木无损检测方法,设计一种16电极的数据采集系统。
该系统以LabVIEW 程序控制数据采集卡为核心,使用NI 公司的USB‐6361数据采集卡产生正弦交流电压信号,再将其输入压控电流源电路转换为电流激励信号。
激励信号循环注入到立木表面的16个电极中,按照相邻激励‐相邻测量的方式采集立木边界电压。
然后,利用仪器仪表放大电路、可编程增益二级放大电路、高通滤波电路对采集的信号进行处理,以达到放大和滤波的目的。
专利名称:一种基于改进量子粒子群算法的波场模拟方法专利类型:发明专利
发明人:王之洋,朱孟权,俞度立,白文磊,陈朝蒲
申请号:CN201911048825.X
申请日:20191031
公开号:CN110795882A
公开日:
20200214
专利内容由知识产权出版社提供
摘要:本方法提供了一种基于改进的量子粒子群方法有限差分数值模拟方法,属于地震勘探技术领域。
具体通过改进量子粒子群算法对包含有限差分系数的目标函数进行优化求解,搜索获得优化的有限差分系数,再利用该有限差分系数构建有限差分算子,对弹性波动方程进行离散,并进行地震波场数值模拟,以提高了地震波场数值模拟的精度与效率。
申请人:北京化工大学
地址:100029 北京市朝阳区北三环东路15号
国籍:CN
代理机构:北京思海天达知识产权代理有限公司
代理人:吴荫芳
更多信息请下载全文后查看。
一种声学层析成像温度分布高分辨率重建方法
张立峰;苗雨
【期刊名称】《系统仿真学报》
【年(卷),期】2022(34)9
【摘要】准确测量温度分布对工业生产具有重要的意义。
针对声学层析成像中有限的网格划分数目会影响重建精度的问题,提出TR-RBF(tikhonov regularization-radial basis function)重建算法对温度场进行高分辨率重建。
采用Tikhonov正则化对超声飞行时间(time of flight,TOF)重建,得到粗网格下的温度分布,并用局部加权回归法对数据进行平滑处理,进而采用RBF神经网络将粗解进行预测得到细化后的温度分布。
通过有噪声和无噪声的数值仿真,本算法与ART、SVD和Tikhonov 三种算法相比,在典型峰型温度分布情况下的重建精度提升明显且抗噪性最好。
【总页数】9页(P2065-2073)
【作者】张立峰;苗雨
【作者单位】华北电力大学自动化系
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.储粮温度分布声学CT重建仿真
2.一种基于TDLAS的高分辨率二维温度场重建算法及数值仿真
3.基于SA-ELM的声学层析成像温度分布重建算法
4.基于吸收光
谱层析成像的气体摩尔分数和温度分布二维重建5.一种高分辨率多基线InSAR三维层析成像方法
因版权原因,仅展示原文概要,查看原文内容请购买。
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING:ELECTRONIC NETWORKS,DEVICES AND FIELDS Int.J.Numer.Model.2010;23:1–19Published online6July2009in Wiley InterScience().DOI:10.1002/jnm.720 Advanced models for transient analysis of lossy and dispersiveanisotropic planar layersGiulio AntoniniÃ,yUAq EMC Laboratory,Dipartimento di Ingegneria Elettrica e dell’Informazione,Universita`degli Studi dell’Aquila,Monteluco di Roio,67040L’Aquila,ItalySUMMARYA new model is proposed for the transient analysis of the electromagneticfield propagation through anisotropic lossy and dispersive layers.The propagation equations of the electromagneticfields are solved as a Sturm–Liouville problem leading to identify its dyadic Green’s function in a series rational form. Then,the corresponding poles and residues are obtained and a reduced order macromodel is generated, which can be easily embedded within existing three dimensional solvers.The model is applied to lossy and dispersive anisotropic layers with differently polarized plane–waves.Copyright r2009John Wiley& Sons,Ltd.Received1November2008;Revised23January2009;Accepted3June2009KEY WORDS:planar anisotropic layers;lossy and dispersive media;dyadic Green’s function;transient analysis1.INTRODUCTIONComposite materials have received an increasing interest in industrial and military applications and have been suggested as substitutes for metals in modern aircrafts systems by virtue of their superior mechanical properties in strength-to-weight and modulus-to-weight ratios.They are generally laminated,anisotropic and lossy.A pioneering investigation of the electromagnetic properties of advanced composite materials is reported in[1].More recently,the characteriza-tion of the reflection,transmission and shielding properties of such materials have been presented in several studies in the frequency domain[2–4].Transient analysis of anisotropic lossy slabs can be performed using an equivalent-transmission-line-circuit[5,6].This approach*Correspondence to:Giulio Antonini,UAq EMC Laboratory,Dipartimento di Ingegneria Elettrica e dell’Informazione, Universita degli Studi dell’Aquila,Monteluco di Roio,67040,L’Aquila,Italy.y E-mail:giulio.antonini@univaq.itContract/grant sponsor:Italian Ministry of University(MIUR)under a Program for the Development of Research of National Interest;contract/grant number:2006095890Copyright r2009John Wiley&Sons,Ltd.relies on the analogy between the field equations and the coupled transmission line equations [7]and,as a consequence,the standard halt-T ladder network (HTLN)is used.On the other hand,it is known that the HTLN model contains much more information than needed [8]and a reduced order model may be more suitable for a computer implementation.Such a limitation has been overcome in [9]by adopting the vector fitting technique [10],which allows the extraction of a reduced order rational macromodel,which is interfaced to a finite difference time domain solver.In this way,thin composite structures are modeled through the use of convolution integrals avoiding their spatial discretization,which is typically a cpu-time consuming process.In [11]a new methodology for the transient analysis of plane waves obliquely incident on a planar lossy and dispersive layer has been presented.The proposed model is based on the Sturm–Liouville problem associated with the propagation equations.The Green’s function is calculated in a rational series form and the open-end impedance matrix is obtained as the sum of infinite rational functions.The rational form permits an easy identification of poles and residues.The pole–residue representation is converted into a state-space model,which can be easily interfaced with ordinary differential equation solvers.The aim of this paper is to extend the previous approach to the transient analysis of plane waves impinging on planar anisotropic lossy and dispersive layers.The TM z –TE z mode coupling generated by the anisotropy leads to a multidimensional wave propagation problem.The propagation equation within the layer is solved as a Sturm–Liouville problem where tangential electric fields are considered as unknowns and tangential magnetic fields as sources.This allows one to write the dyadic Green’s function of the problem in a rational series form from which poles and residues can be easily identified.Hence,an arbitrary large rational macromodel can be generated and used to obtain a finite state-space representation,which is well suited for computer implementation.The paper is organized as follows.In Section 2,the propagation equations of electromagnetic fields through lossy and dispersive anisotropic layers are derived and re-cast as a Sturm–Liouville problem.Then,in Section 3,the dyadic Green’s function is obtained as solution of the corresponding Sturm–Liouville problem and the impedance matrix computed.The knowledge of the rational form of the impedance matrix pawns the way to the computation of a reduced order macromodel and,finally,to a state-space realization.Sections 4presents the numerical results validating the proposed method and Section 5draws the conclusions.2.PROPAGATION OF TANGENTIAL FIELDSLet us assume that the incident electromagnetic fields is described as a uniform plane wave with angle of incidence and polarization with respect to a spherical coordinate system as illustrated in Figure 1.Free space is assumed as the background medium.The propagation vector k of the wave is incident at angles y p from the x axis and /p from the projection onto the y –z plane from the y axis,as shown in Figure 1(a).The polarization of the electric field vector is described in terms of the unit vectors in the spherical coordinate system,a y and a f ,as illustrated in Figure 1(b).The general expression for the electric field vector in the Laplace domain is:E i ¼E 0e x a x þe y a y þe z a z ÀÁe Àk x x Àk y y Àk z z ð1ÞG.ANTONINI2Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhere the components of the incident electric field vector (e x ,e y ,e z )can be expressed in terms of the polarization angles y E ;y p ;f p [12].The propagation vector k ¼ðkx ;ky ;kz Þhas an amplitude k ¼s =c 0¼s ffiffiffiffiffiffiffiffiffim 0e 0p ,being s the complex frequency variable.Let us consider the propagation of a obliquely impinging plane wave through an anisotropic planar layer,as shown in Figure 2.Curl Maxwell’s equations,in the Laplace domain,read:H ÂE ðr ;s Þ¼Às m ðs ÞH ðr ;s Þð2a ÞH ÂH ðr ;s Þ¼s ðs ÞE ðr ;s Þþs e ðs ÞE ðr ;s Þð2b Þwhere m ðs Þ;e ðs Þ;s ðs Þare frequency dependent tensors of the magnetic permeability,electric permittivity and electric conductivity of the layer,respectively.Assuming that the anisotropyis Figure 1.Definitions of the parameters characterizing the incident field as a uniform plane wave.Figure 2.Global coordinates and principal coordinates for an anisotropic planar layer.ADVANCED MODELS FOR TRANSIENT ANALYSIS 3Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmin the transverse plane x–y only,they are given by:m sðÞ¼m xx m xy0m yx m yy000m zz26643775ð3Þe sðÞ¼e xx e xy0e yx e yy000e zz264375ð4Þs sðÞ¼s xx s xy0s yx s yy000s zz2435ð5Þwheree xx¼e0x cos f2þe0y sin f2ð6aÞe xy¼e yx¼ðe0x Àe0yÞcos f sin fð6bÞe yy¼e0x sin f2þe0ycos f2ð6cÞe zz¼e0zð6dÞThe dependence on the Laplace variable has been omitted for the sake of clarity.Here,ðe0x ;e0y;e0zÞare the permittivities with respect to the principal axis and f is the angle between the global and the principal axis of the layer.Similar expressions are used for the conductivities s xx;s xy;ð¼s yxÞ;s yy;s zz and permeabilities m xx;m xy;ð¼m yxÞ;m yy;m zz.Since we want to obtain impedance boundary conditions which connect tangential components on the interfaces,it is convenient to separate the tangentialfield components (E t(r,s),H t(r,s))from the normal ones(E n(r,s),H n(r,s)).Hence,we can write:E¼E tþE n n H¼H tþH n nð7ÞwhereE tÁn¼0H tÁn¼0ð8ÞAnalogously,the nabla operator H and the tensors of magnetic permeability,electric permittivity and conductivity can be split into their tangential and normal components[13].In the following,a standard approach is adopted[13]by equating separately the normal components of(2),eliminating the normal components and cross multiplying by n.Finally,a first-order state equation governing the electromagneticfields in the slab can be derived asd d zE xðzÞÀE yðzÞH yðzÞH xðzÞ26666643777775¼AÁE xðzÞÀE yðzÞH yðzÞH xðzÞ26666643777775ð9ÞG.ANTONINI4Copyright r2009John Wiley&Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhere the matrix A is as follows:A¼00Às m yyÀk2xs zzþs e zzÀs m xyþk x k ys zzþs e zz00Às m yxþk y k xs zzþs e zzÀs m xxÀk2ys zzþs e zz!Às xxþs e xxÀk2ys m zz!ÀÀs xyÀs e xyÀk x k ys m zz00ÀÀs yxÀs e yxÀk x k ys m zzÀs yyþs e yyÀk2xs m zz002 66 66 66 66 66 66 643 77 77 77 77 77 77 75ð10ÞHence,it is possible identifying the per-unit-length impedance and admittance matrices,respectively,as:Z0ðsÞ¼s m yyÀk2xs zzþs e zzs m xyþk x k ys zzþs e zzs m yxþk y k xs zzþs e zzs m xxÀk2ys zzþs e zz26643775ð11aÞY0ðsÞ¼s xxþs e xxÀk2ys m zzÀs xyÀs e xyÀk x k ys m zzÀs yxÀs e yxÀk x k ys m zzs yyþs e yyÀk2xs m zz26643775ð11bÞThe second-order wave equation for the transverse electricfield component~E t¼ðE x;ÀE yÞimmediately follows from the transmission line equations(9),after elimination of the magnetic field and it takes the form;@2 @z2~EtÀGðsÞ~E t¼0ð12Þwhere CðsÞ¼Z0ðsÞY0ðsÞ.It is to be pointed out that thefield pairs(E x,H y)and(ÀE x,H y) corresponds to TM z and TE z polarizations.Both the polarizations exhibit a Poynting vector along the z axis;a perfect analogy with coupled transmission lines can be established,as it is presented in[5–14].It is also clearly recognized that the model presented in those papers is a special case of the methodology proposed in this work.2.1.Boundary conditionsThe system of global coordinates x,y and z can always be chosen such that k y50,as in Figure3.In this case,the component k x of the propagation vector can be related to the Laplace variable ask x¼ssin y ið13Þwhere c0is the speed of light in the background homogenous medium and y i is the incidence angle of the incident plane wave.The incidence angle y i can be expressed in terms of the polarization angle y p as:y i¼pÀy pð14ÞADVANCED MODELS FOR TRANSIENT ANALYSIS5 Copyright r2009John Wiley&Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmHence,boundary conditions need to be enforced at the two interfaces z ¼0;z ¼d ;they read:ÀE y ð0;s Þ¼À2E i y ðs ÞÀZ 0cos y iH x ð0;s Þð15a ÞÀE y ðd ;s Þ¼Z 0cos y i H x ðd ;s Þð15b Þfor the TE z polarization andE x ð0;s Þ¼2E i x ðs ÞÀZ 0cos y i H y ð0;s Þð16a ÞE x ðd ;s Þ¼Z 0cos y i H y ðd ;s Þð16b Þfor the TM z polarization.2.2.Incorporation of interface magnetic fields as sourcesMagnetic (or electric)fields at abscissa z 50and z 5d can be regarded as external sources and described in terms of distributed sourcesH ys ðz ;s Þ¼H y ð0;s Þd ðz ÞþH y ðd ;s Þd ðz Àd Þð17a ÞH xs ðz ;s Þ¼H x ð0;s Þd ðz ÞþH x ðd ;s Þd ðz Àd Þð17b Þwhere d ðz Þrepresents the Dirac delta function.The sources can be written in a vector form asH s ðz ;s Þ¼H 0ðs Þd ðz ÞþH d ðs Þd ðz Àd Þð18Þwhere H 0ðs Þ¼½H y ð0;s Þ;H x ð0;s Þ T and H d ðs Þ¼½H y ðd ;s Þ;H x ðd ;s Þ T .Following the same approach described in [11],the incorporation of such distributed source in Telegrapher’s equations (12)permits to obtain@2~E t ÀG ðs Þ~E t ¼ÀZ 0ðs ÞH s ðz ;s Þð19ÞFrom (10)it is seen that the TM z and TE z modes are coupled by both the wave vector components k x and k y ,which depend on the system of coordinates,and the anisotropy,described by the off-diagonal terms oftensors.Figure 3.Incident plane wave to the planar structure:(a)TE z polarization mode and (b)TM z polarization mode.G.ANTONINI6Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnm3.DYADIC GREEN’S FUNCTION FOR A PLANAR ANISOTROPIC LAYER Equation(19)can be regarded as a vector Sturm–Liouville problem,which,in general,can be written as½Lþl rðzÞ yðzÞ¼fðzÞð20Þwhere0z d,L is the Sturm–Liouville operator,l is a z-independent matrix,r(z)is a diagonal z-dependent matrix and f(z)is the vector of distributed sources.The boundary conditions can be either of Dirichlet or Neumann or mixed type and,in general,we can writea1yðzÞþa2dd zyðzÞz¼0j¼0ð21aÞb1yðzÞþb2dd zyðzÞz¼dj¼0ð21bÞIn the specific case of oblique incidence of plane waves on anisotropic layers,it is easy to recognize that:L¼U d2d zð22aÞl¼ÀZ0ðsÞY0ðsÞð22bÞrðzÞ¼Uð22cÞfðzÞ¼ÀZ0ðsÞH sðz;sÞð22dÞwhere U represents the identity matrix.Furthermore,since the magneticfield at the interface is already modeled through the source vector(18),boundary conditions of the Neumann type can be adopted:d d z ~Et z¼0j¼dd z~Et z¼dj¼0ð23aÞSince both TE z and TM z modes can be excited separately,two vector Green’s functions,one for each mode,are ing a dyadic notation[15]yields:G jðz;z0Þ¼X2i¼1G ij z;z0ÀÁu i j¼1;2ð24ÞThe two Green’s functions G jðz;z0Þare the solution of the equations:A G jðz;z0Þ¼½Lþl rðzÞ G jðz;z0Þ¼dðz;z0Þu j j¼1;2ð25Þwhere dðz;z0Þis the one-dimensional Dirac delta function.The dyadic Green’s function G z;z0ðÞis given by:Gðz;z0Þ¼X2j¼1G jðz;z0Þu j¼X2j¼1X2i¼1G ijðz;z0Þu i u jð26ÞADVANCED MODELS FOR TRANSIENT ANALYSIS7 Copyright r2009John Wiley&Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhich,with a matrix notation,can be written as:G ðz ;z 0Þ¼G 11G 12G 21G 22"#ð27ÞSince the Sturm–Liouville problem (22),along with the boundary conditions (23)is self-adjoint[16],it is possible to expand the vector Green’s function in terms of a set of basis functionsf n ðz Þas:G j ðz ;z 0Þ¼X 1n ¼0a nj ðz 0Þf n ðz Þð28Þwhere a nj is the amplitude coefficient vector.Eigenfunctions f n ðx Þsatisfy the corresponding eigenvalue problem d 2d x þk 2n !f n ðx Þ¼0ð29Þwhere the eigenvalues are all positive k 2n ¼l n 40since the Sturm–Liouville problem is self-adjoint.Furthermore,the boundary conditions are of the Neumann type:d f n ðx Þz ¼0j ¼d f nðz Þz ¼d j ¼0ð30ÞEigenvalues k n and eigenfunctions f n ðz Þ;n ¼0;1;ÁÁÁ1can be easily found as [17]:k n ¼n p d n ¼0;1;ÁÁÁ;1ð31a Þf 0ðz Þ¼ffiffiffi1dr n ¼0ð31b Þf n ðz Þ¼ffiffiffi2d r cos n p dz n ¼1;ÁÁÁ;1ð31c Þwhere the magnitude of the eigenfunctions has been computed enforcing their orthonormality Z df m ðz Þf n ðz Þd z ¼d mn ð32ÞForcing the vector Green’s function G j ðz ;z 0Þto be the solution of (25)and using the orthonormality conditions of the eigenfunctions (32),the coefficient vector a nj z 0ðÞis obtained a nj z 0ÀÁ¼l Àl n ðÞÀ1f n ðz 0Þu j j ¼1;2ð33ÞApplying the right dyadic product [15]to (33),multiplying it by u j ,and taking the sum over index j ,yields:X2j ¼1a mj z 0ÀÁu j ¼a n ðz 0Þ¼l Àl n ðÞÀ1f n ðz 0ÞX 2j ¼1u j u j¼l Àl n ðÞÀ1U f n ðz 0Þ¼l Àl n ðÞÀ1f n ðz 0ÞHence,the dyadic Green’s function (27)can be written as:G z ;z 0ÀÁ¼X 1n ¼0a n ðz 0Þf n ðz Þ¼X 1n ¼0l Àl n ðÞÀ1f n ðz 0Þf n ðz ÞG.ANTONINI8Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnm3.1.Rational macromodel of the Z impedanceThe knowledge of the dyadic Green’s function G z ;z 0ðÞin the rational form (34)pawns the way to the development of a rational macromodel of the layer.In fact,the electric field vector ~E t ¼ðE x ;ÀE y Þcan be computed as:~E t ðz ;s Þ¼Z d 0G ðz ;z 0Þf ðz 0Þd z 0ð34ÞEvaluating ~E t ðz ;s Þin correspondence to the interfaces z 50and z 5d yields ~E t ð0;s Þ~Et ðd ;s Þ2435¼Z 11Z 12Z 21Z 222435ÁH ð0;s ÞH ðd ;s Þ2435ð35Þwhere the impedance matrix Z (s )entries are:Z 11¼Z 22¼X 1n ¼0G 2ðs Þþn p d 2U !À1ÁA 2n Z 0ðs Þð36a ÞZ 21¼Z 12¼X 1n ¼0G 2ðs Þþn p d 2U !À1ÁA 2n Z 0ðs ÞÀ1ðÞn ð36b ÞIf dispersive media are considered,we assume that the physical properties of the layer are known as tabulated data,at discrete frequencies.A rational model of the per-unit-length impedance Z 0(s )and admittance Y 0(s )can be obtained by using the vector fitting algorithm [10]:Z 0ðs Þ¼s ~lþX P Z q ¼1R Z s Àp q ;Z ¼B p ðs ÞA p ðs Þ¼b 1s P Z þ1þb 2s P Z s þÁÁÁþb P Z s þb P Z þ11Z 2Z P Z À1P Zð37a ÞE x (0,s -E y (0,s )E x (d ,s )-E y (d,s )Figure 4.Planar layer macromodel.ADVANCED MODELS FOR TRANSIENT ANALYSIS 9Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmY 0s ðÞ¼~sþs ~e þX P Y q ¼1R Y s Àp q ;Y ¼D p ðs ÞC p ðs Þ¼d 1s P Y þ1þd 2s P Y s þÁÁÁþd P Y s þd P Y þ1c 1s Y þc 2s Y þÁÁÁþc P Y À1s þc P Yð37b Þ02468x 1013Real(poles)Order 20 model Reduced order model 00.51 1.5024681012141618x 1013x 1011Frequency [GHz]I m a g (p o l e s )M a g n i t u d e o f r e s i d u e s Order 20 model Reduced order modelx 104Figure 5.Location of poles in the complex plane (top)and magnitude spectrum of residues of impedance Z 14(bottom)(Section 4.1).The circle refer to the poles of the order 20model,the stars refers to the polesselected as dominant.G.ANTONINI10Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhere P z and P Y represent the number of poles used in the rational approximation,B p (s )and D p (s )are polynomial matrices and A p (s )and C p (s )can be made strictly Hurwitz polynomials by enforcing their zeros to be on the left complex plane,when using the vector fitting algorithm.Impedance matrix Z(s )can be recast as Z ðs Þ¼X 1n ¼0B p ðs ÞA p ðs ÞD p ðs ÞC p ðs Þþn p d 2U !À1ÁA 2n B p ðs ÞA p ðs Þ1À1ðÞn À1ðÞn 12435¼X1n ¼0B p ðs ÞD p ðs ÞþA p ðs ÞC p ðs Þn p d 2U !À1ÁA 2n B p ðs ÞC p ðs Þ1À1ðÞn À1ðÞn 12435¼X1n ¼0E p s ðÞÀ1A 2n B p ðs ÞC p ðs Þ1À1ðÞn À1ðÞn 12435ð38Þwhere E p ðs Þ¼B p ðs ÞD p ðs ÞþA p ðs ÞC p ðs Þn p d ÀÁ2U .The entries of impedance matrix Z (s )are strictlyproper rational functions and share the same poles,which can be evaluated as the zeros of the characteristic polynomial Q n (s):Q n ðs Þ¼det B p ðs ÞD p ðs ÞþA p ðs ÞC p ðs Þn p d2U !¼0ð39Þfor n ¼0;...;1.Each mode n generates a number of poles depending on the order of the rational approximations (37a)and (37b):~n poles ;n ¼order conv ðB p ;D p ÞÂÃÁ2¼P Z þP Y þ2ðÞÁ2ð40Þ05101520100Frequency [GHz]|G 14|Figure 6.Magnitude spectrum of the Green’s function G 14(Section 4.1).The solid line refers to the result obtained considering all the poles (GF),the dashed line refers to the reduced order model (GF-mor).Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhere conv denotes the product of polynomials in argument and order is the order of the polynomial in argument.The corresponding residues can be computed,using standard techniques [18],asR k ¼adj E ðs ÞðÞA 2n B p ðs ÞC p ðs Þs ¼p n ðk ÞQ n 1Q poles l ¼1ð77Þl ¼k p n ðk ÞÀp n ðl Þ½Á1À1ðÞn À1ðÞn 1"#ð41Þ202530354045500.20.40.60.81Time [ns]E i [V /m ]Figure 8.Incident electric field (Section 4.1).05101520101.895101.896Frequency [GHz]|Z 14| []Figure 7.Magnitude spectrum of impedance Z 14(Section 4.1).The solid line corresponds to the result obtained with use of the plane waves theory (PWT),the dashed line refers to the results obtained by using the proposed methodology (GF),the dashdot line refers to the proposed methodology considering only thedominant poles (GF-mor).Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmfor k ¼0;...;n poles ,where adj ðÁÞrepresents the adjoint operator of the matrix in argument,p n (k )is the k -th pole generated by the n -th mode and Q n 1denotes the coefficient of the highest power in s in polynomial matrix E p (s ).Once poles and residues of the rational representation of matrix Z(s )are obtained,a pole pruning can be performed and the n d poles dominant poles identified,following the criteria illustrated in [8].The impedance matrix Z(s )can be re-written in a pole/residue form asZ ðs Þ¼Xn d polesk ¼1R k s Àp k ð42Þ0.020.040.060.08Time [ns]E [V /m ]0.020.04Time [ns]E [V /m ]Figure 9.Transmitted electric field for the TE z (top)and TM z (bottom)polarizations (Section 4.1).The solid line corresponds to the result obtained with use of the PWT via IFFT,the dashdot line refers to theresults obtained using the proposed methodology in the time domain (GF-TD).Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmwhich is suited for both circuit synthesis [19]and state-space realization [20,21].The equivalent circuit can be analyzed by means of SPICE-like solvers [22];the state-space equations can be written as_x ðt Þ¼Ax ðt ÞþBH ðt Þð43a Þ~Et ðt Þ¼Cx ðt ÞþDH ðt Þð43b Þwhere A 2<n d poles Ân d poles ,B 2<n d poles Â4,C 2<4Ân d poles ,D 2<4Â4,n d poles being the number of theselected dominant poles (Figure 4).4.NUMERICAL RESULTS4.1.Anisotropic lossy layer-TE polarizationIn the first example,a TE z polarized plane wave is assumed impinging with incidence angle y i ¼p =3on a planar composite layer exhibiting anisotropy due to the presence of conducting fibers (see Figure 2).The planar layer is 0.5mils thick and characterized by electrical conductivity s x 54Â104S/m and s y 5s z 550S/m and permittivity e x ¼e y ¼e z ¼5e 0,in the local system of coordinates.The orientation of fibers,with respect to the global system of coordinates,is defined by f ¼p =4.The magnetic permeability is assumed equal to that of vacuum.A rational model of order 21has been generated;the computation has been carried out on a AMD Athlon 2GHz processor,equipped with 1.5Gb RAM and took 2.5s,leading to 84poles among which only 29have been selected as dominant.Figure 5(top)shows the location of poles in the complex plane.The selection of the dominant poles has been accomplished on the base of their resonance frequency and the magnitude of the corresponding residues,as shown in Figure 5(bottom).0246810103104105106Frequency [GHz]|Z 13| []PWTGFFigure 10.Magnitude spectrum of impedance Z 13(Section 4.2).The solid line corresponds to the result obtained with use of the PWT,the dashed line refers to the results obtained by using the proposedmethodology (GF).Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnmFigure 6shows the comparison of the magnitude spectrum of the Green’s function G 14as evaluated considering all the poles and only the dominant ones.Figure 7shows a sample of the magnitude spectrum of impedance Z 14as evaluated by the plane wave theory (PWT)and the proposed Green’s function-based methodology.A satisfactory agreement is obtained over the entire frequency bandwidth of interest.The layer is excited by a TE z polarized plane wave whose time behavior is shown in Figure 8.Due to the anisotropy,transmitted electric field is characterized by both TE z and TM z modes,shown in Figure 9.The results have been computed by using the PWT via IFFT4550550.10.20.30.40.5Time [ns]E [V /m]45505512345Time [ns]E [V /m]Figure 11.Transmitted electric field for the TM z (top)and TE z (bottom)polarizations (Section 4.2).The solid line corresponds to the result obtained with use of the PWT via IFFT,the dashdot line refers to theresults obtained using the proposed methodology in the time domain (GF-TD).Copyright r 2009John Wiley &Sons,Ltd.Int.J.Numer.Model.2010;23:1–19DOI:10.1002/jnm。
基于神经网络的金融市场艾略特波浪识别李音润;欧鸥【摘要】艾略特波浪理论作为金融市场的研究工具,描述了股价的结构规律.针对艾略特波浪理论,结合人工智能方法,以时间序列为基础,提出并比较了两种基于人工神经网络的分类器.第一种技术是结合了后向传播学习算法的多层人工神经网络,1 600次迭代后均方误差小于0.87.根据传统后向传播网络的缺陷与金融市场的特性,提出第二种改进网络,即与模糊理论相结合的基于缩放共轭梯度算法的人工神经网络.经120次迭代后均方误差小于0.22,相比于第一种方法,准确率提高74.7%,收敛速度提高92.5%.【期刊名称】《计算机应用与软件》【年(卷),期】2018(035)012【总页数】8页(P285-292)【关键词】人工神经网络;模糊神经网络;艾略特波浪理论;后向传播算法;模糊理论;缩放共轭梯度算法【作者】李音润;欧鸥【作者单位】成都理工大学信息科学与技术学院四川成都610059;成都理工大学信息科学与技术学院四川成都610059【正文语种】中文【中图分类】TP391.40 引言随着机器学习、人工神经网络、强化学习和深度学习等人工智能技术的发展,人工智能技术被成功应用于图像处理、语音识别和自然语言处理等领域。
人工神经网络属于机器学习领域的一个分支,具有非线性、自适应的分布式并行结构,可用于解决分类和回归问题。
金融市场结构复杂、波动频繁的特点受人类社会经济和自然各方面因素影响。
大量复杂的变化因素导致研究分析市场行为的困难增加。
艾略特波浪理论被成功应用于金融市场的分析。
该理论由R.N.艾略特[1](Ralph Nelson Elliott)提出。
艾略特认为金融市场的波动行为遵循一定的模式,仅在范围和时间上有区别,他将这类模式定义为“艾略特波浪”。
此外,波浪理论不仅适用于描述交易市场的变化行为,还可正确描述人类群体性行为以及各种自然现象,因此又称之为“自然法则”。
尽管艾略特波浪理论具有较高的准确性,但目前国内学者对它的研究较少,将人工智能应用于该理论的研究更是寥寥无几。
低功耗大容量的野外数据采集仪
雷娟芳
【期刊名称】《北京化工大学学报:自然科学版》
【年(卷),期】1995(022)002
【摘要】讨论了低功耗大容量的野外数据采集仪的研制方法,仪器以80C31单片机为核心,全部使用CMOS器件,采用分块供电等多种方法,使采集仪的功耗很低,且容量大,同时,详细地介绍A/D部分的设计方案。
【总页数】8页(P47-54)
【作者】雷娟芳
【作者单位】无
【正文语种】中文
【中图分类】TP216.1
【相关文献】
1.基于GPS/GPRS的野外虚拟数据采集仪 [J], 岳洪伟;金迎迎
2.多通道高速大容量数据采集仪的研制 [J], 李金猛;周勇军;潘庆国;朱维玮
3.基于MSP430和MATLAB的低功耗多通道数据采集仪的研制 [J], 吕杰;韩书娜;陆畅
4.单通道低功耗大容量海洋声信号测量仪的设计与实现 [J], 刘颉;刘蔚;李国富;张晓娟;张爽;李琦;杨逍;;;
5.多通道大容量同步数据采集仪 [J], 无;王元荪
因版权原因,仅展示原文概要,查看原文内容请购买。