第4章并行性:互斥和同步介绍
- 格式:ppt
- 大小:869.50 KB
- 文档页数:122
操作系统同步和互斥操作系统中的进程之间的关系只有两种:同步与互斥。
下面由店铺为大家整理了操作系统的同步和互斥的相关知识,希望对大家有帮助!操作系统同步和互斥1.进程同步进程同步也是进程之间直接的制约关系,是为完成某种任务而建立的两个或多个线程,这个线程需要在某些位置上协调他们的工作次序而等待、传递信息所产生的制约关系。
进程间的直接制约关系来源于他们之间的合作。
比如说进程A需要从缓冲区读取进程B产生的信息,当缓冲区为空时,进程B因为读取不到信息而被阻塞。
而当进程A产生信息放入缓冲区时,进程B才会被唤醒。
2.进程互斥进程互斥是进程之间的间接制约关系。
当一个进程进入临界区使用临界资源时,另一个进程必须等待。
只有当使用临界资源的进程退出临界区后,这个进程才会解除阻塞状态。
比如进程B需要访问打印机,但此时进程A占有了打印机,进程B会被阻塞,直到进程A释放了打印机资源,进程B才可以继续执行。
扩展:临界资源在操作系统中,进程是占有资源的最小单位(线程可以访问其所在进程内的所有资源,但线程本身并不占有资源或仅仅占有一点必须资源)。
但对于某些资源来说,其在同一时间只能被一个进程所占用。
这些一次只能被一个进程所占用的资源就是所谓的临界资源。
典型的临界资源比如物理上的打印机,或是存在硬盘或内存中被多个进程所共享的一些变量和数据等(如果这类资源不被看成临界资源加以保护,那么很有可能造成丢数据的问题)。
对于临界资源的访问,必须是互诉进行。
也就是当临界资源被占用时,另一个申请临界资源的进程会被阻塞,直到其所申请的临界资源被释放。
而进程内访问临界资源的代码被成为临界区。
对于临界区的访问过程分为四个部分:1.进入区:查看临界区是否可访问,如果可以访问,则转到步骤二,否则进程会被阻塞2.临界区:在临界区做操作3.退出区:清除临界区被占用的标志4.剩余区:进程与临界区不相关部分的代码临界资源使用规则:忙则等待、优先等待、空闲让进、让权等待(在临界区的进程,不能在临界区内长时间处于事件等待,必须在一定时间退出临界区)。
互斥与同步互斥与同步是计算机科学中两个重要的概念,它们是多线程编程中必须掌握的知识点。
本文将介绍互斥与同步的概念、原理、实现方式以及应用场景。
一、互斥1.1 概念互斥是指在多线程并发执行时,对于共享资源的访问需要保证线程之间的排他性,即在任意时刻只有一个线程能够访问共享资源。
1.2 原理互斥的实现基于锁机制,即在访问共享资源前获取锁,在使用完毕后释放锁。
这样可以保证在任意时刻只有一个线程能够获得锁,从而避免了多个线程同时访问共享资源造成的数据竞争问题。
1.3 实现方式常见的实现方式包括:(1)临界区:将对共享资源的访问限制在一个代码块内,在进入临界区前获取锁,在离开临界区后释放锁。
(2)信号量:通过计数器来控制同时进入临界区的线程数量,当计数器为0时表示当前没有进入临界区的线程,当计数器大于0时表示当前有进入临界区的线程。
(3)互斥量:是一种特殊的信号量,只能被一个线程获取,其他线程需要等待该线程释放互斥量后才能获取。
1.4 应用场景互斥常用于对共享资源的访问控制,例如多个线程同时访问同一个文件、数据库或网络连接等。
二、同步2.1 概念同步是指在多线程并发执行时,保证线程之间的协调和顺序性,使得程序按照预期的顺序执行。
2.2 原理同步的实现基于信号机制,即在某个条件满足时通知其他线程进行操作。
例如,在生产者-消费者模型中,当生产者生产了数据后需要通知消费者进行消费。
2.3 实现方式常见的实现方式包括:(1)条件变量:通过等待和唤醒操作来实现对某个条件的等待和通知。
(2)事件对象:是一种特殊的条件变量,可以通过事件对象来设置和清除事件状态,并在事件状态发生改变时通知其他线程进行操作。
(3)屏障:是一种同步原语,在多个线程到达屏障点时会被阻塞,直到所有线程都到达后才会继续执行。
2.4 应用场景同步常用于对线程之间的协调和顺序性控制,例如在多个线程之间进行任务分配、消息传递等。
三、互斥与同步的关系互斥和同步是两个相互依存的概念。
进程之间同步和互斥的区别和联系
进程之间同步和互斥是操作系统中常见的概念,它们之间有一定的区别和联系。
同步是指多个进程之间的协调,以便它们能够有序地执行。
同步的目的是保证数据的一致性,避免出现数据竞争的情况。
同步可通过共享变量、信号量等方式实现,实现同步的方法包括互斥、条件变量等。
互斥是一种同步机制,用于保护共享资源,防止多个进程同时访问同一资源。
互斥的实现通常是通过临界区实现的,即对于一段代码,只允许一个进程访问,其他进程需要等待。
互斥能够避免多个进程同时写入共享资源,保证了数据的正确性。
同步和互斥的联系在于它们都是为了保证多个进程之间的协调
和数据的正确性。
同步和互斥都是通过对共享资源进行限制来实现的,区别在于同步是为了保证进程的顺序执行,而互斥是为了保证共享资源的安全性。
总的来说,同步和互斥都是操作系统中非常重要的概念,它们的合理运用可以提高操作系统的性能和稳定性。
- 1 -。
详解进程同步与互斥机制⽬录⼀、什么是进程同步⼆、什么是进程互斥三、常见的进程同步与互斥机制⼀、什么是进程同步在多道批处理系统中,多个进程是可以并发执⾏的,但由于系统的资源有限,进程的执⾏不是⼀贯到底的,⽽是⾛⾛停停,以不可预知的速度向前推进,这就是进程的异步性。
那么,进程的异步性会带来什么问题呢?举个例⼦,如果有 A、B 两个进程分别负责读和写数据的操作,这两个线程是相互合作、相互依赖的。
那么写数据应该发⽣在读数据之前。
⽽实际上,由于异步性的存在,可能会发⽣先读后写的情况,⽽此时由于缓冲区还没有被写⼊数据,读进程 A 没有数据可读,因此读进程 A 被阻塞。
进程同步(synchronization)就是⽤来解决这个问题的。
从上⾯的例⼦我们能看出,⼀个进程的执⾏可能影响到另⼀个进程的执⾏,所谓进程同步就是指协调这些完成某个共同任务的并发线程,在某些位置上指定线程的先后执⾏次序、传递信号或消息。
再举个⽣活中的进程同步的例⼦,你想要喝热⽔,于是你打了⼀壶⽔开始烧,在这壶⽔烧开之前,你只能⼀直等着,⽔烧开之后⽔壶⾃然会发⽣响声提醒你来喝⽔,于是你就可以喝⽔了。
就是说⽔烧开这个事情必须发⽣在你喝⽔之前。
注意不要把进程同步和进程调度搞混了:进程调度是为了最⼤程度的利⽤ CPU 资源,选⽤合适的算法调度就绪队列中的进程。
进程同步是为了协调⼀些进程以完成某个任务,⽐如读和写,你肯定先写后读,不能先读后写吧,这就是进程同步做的事情了,指定这些进程的先后执⾏次序使得某个任务能够顺利完成。
⼆、什么是进程互斥同样的,也是因为进程的并发性,并发执⾏的线程不可避免地需要共享⼀些系统资源,⽐如内存、打印机、摄像头等。
举个例⼦:我们去学校打印店打印论⽂,你按下了 WPS 的 “打印” 选项,于是打印机开始⼯作。
你的论⽂打印到⼀半时,另⼀位同学按下了 Word 的 “打印” 按钮,开始打印他⾃⼰的论⽂。
想象⼀下如果两个进程可以随意的、并发的共享打印机资源,会发⽣什么情况?显然,两个进程并发运⾏,导致打印机设备交替的收到 WPS 和 Word 两个进程发来的打印请求,结果两篇论⽂的内容混杂在⼀起了。
进程同步与互斥总结
进程同步和互斥是操作系统中非常重要的概念,它们都是为了保证多个进程能够在正确的时间顺序和正确的方式下运行。
进程同步是指多个进程之间协调执行的过程,而互斥是指多个进程之间竞争有限资源的过程。
以下是关于进程同步与互斥的一些总结:
1. 进程同步方式:
- 信号量:通过对共享资源的访问进行限制,实现多个进程之间的同步。
- 互斥锁:通过对共享资源的访问进行互斥,实现多个进程之间的同步。
- 条件变量:通过对进程状态的检查,实现多个进程之间的同步。
2. 进程互斥方式:
- 临界区:多个进程同时访问共享资源时,只允许一个进程访问。
- 互斥量:多个进程同时访问共享资源时,通过加锁和解锁来实现互斥。
- 读写锁:多个进程同时访问共享资源时,允许多个进程同时读取,但只允许一个进程写入。
3. 进程同步与互斥的优缺点:
- 信号量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 互斥锁:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 条件变量:优点是可以检查进程状态,缺点是只能处理两个进
程之间的同步。
- 临界区:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 互斥量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 读写锁:优点是可以允许多个进程同时读取,缺点是会出现写入延迟的问题。
综上所述,进程同步与互斥是操作系统中非常重要的概念,需要根据具体的场景选择适合的同步方式或互斥方式来保证多个进程之
间的协调执行和有限资源的竞争。
同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。
在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。
互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。
互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。
二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。
当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。
2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。
一个信号量有一个整型值和两个原子操作:P和V。
P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。
V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。
信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。
3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。
条件变量对应一个条件,并提供了等待和通知的机制。
等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。
通知操作可以使等待中的线程或进程被唤醒,继续执行。
条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。
三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。
该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。
2. 印章(Semaphores)信号量也可以用于实现互斥操作。
•并行计算基础•并行算法设计•并行编程模型与语言目录•并行程序性能优化•并行程序调试与性能分析•总结与展望并行计算概念及特点并行计算概念并行计算是指在同一时间内,使用多个计算资源(如处理器、核心、计算机等)同时执行多个计算任务的过程。
并行计算特点并行计算的主要特点包括同时性、独立性、加速比和可扩展性等。
其中,同时性指多个任务在同一时间内执行;独立性指各个任务之间互不干扰;加速比指并行计算相对于串行计算的加速效果;可扩展性指并行计算系统能够方便地增加计算资源以提高计算能力。
多核处理器集群系统分布式共享内存系统任务并行数据并行流水线并行并行算法特点并行算法分类与特点常见并行算法介绍如并行快速排序、归并排序等,提高排序速度。
如并行广度优先搜索、最短路径算法等,用于图论问题的求解。
如矩阵乘法、矩阵分解等,加速线性代数计算。
如并行蒙特卡洛方法、并行有限元方法等,应用于科学计算领域。
并行排序算法并行图算法并行矩阵运算并行数值计算并行算法性能评价加速比效率可扩展性复杂度分析共享内存编程模型原理及特点常用同步机制典型应用01 02 03原理及特点常用通信方式典型应用消息传递编程模型OpenMP 存并行编程的了简单的并行循环、分段、任务等构造,以及丰富的同步和互斥机制。
用于多核、多线程等共享内存环境,可以方便地实现并行化。
OpenMP MPI 编程的标准接口,提供了丰富的通信函数和同步机制。
MPI 系统等环境,可以实现大规模并行计算。
MPI CUDA 一种并行计算平台和编程模型,支持CUDA 程接口和扩展库,可以方便地实现应用程序。
CUDA 除了上述三种常见的并行编程语言外,还有许多其他语言和工具支持并行编程,如Fortran 这些语言和工具各有特点,可以根据具体应用场景选择合适的编程语言和工具。
其他语言并行编程语言介绍针对特定问题选择合适的并行算法,通过减少计算量、提高计算效率来优化性能。
算法选择与优化数据结构与存储优化编译优化技术运行时优化技术合理设计数据结构,减少数据冗余和访问冲突,提高数据存储和访问效率。
《操作系统》课程教学大纲一、教学大纲说明(一)课程的地位、作用与任务《操作系统》是信息类计算机应用专业学生必修的公共基础课之一,是一门涉及较多硬件知识的计算机系统软件课程。
在计算机软硬件课程的设置上,它起着承上启下的作用。
其特点是概念多、较抽象和涉及面广,其整体实现思想和技术又往往难于理解。
操作系统对计算机系统资源实施管理,是所有其他软件与计算机硬件的唯一接口,所有用户在使用计算机时都要得到操作系统提供的服务。
因此本课程的目的与任务是使学生通过本课程的学习,理解操作系统的基本概念和主要功能,掌握常用操作系统(如UNIX、xinux)的使用和一般管理方法,了解它是如何组织和运作的,从而为学生以后的学习和工作打下基础。
先修课要求,本课程在学习之前最好具有计算机组成原理、程序设计语言的知识。
(二)课程的教学目的和要求通过本课程的学习,使学生较好地掌握操作系统在计算机系统中的重要作用和基本工作原理。
了解操作系统发展过程、新技术的应用。
理解操作系统的基本概念和主要功能,掌握常用操作系统及它们的使用和一般管理方法,为今后的进修、应用实务作好技术准备。
掌握:基本概念包括:多道程序设计、并发、分时、作业、进程、互斥与同步、周转时间、吞吐量、重定位、连接、虚拟存储、虚拟设备、死锁、线程。
基本知识:计算机系统资源(处理机、存储器、设备、文件)的管理策略。
基本技能:管理系统资源的常用命令、系统配置与维护的方法和技术。
理解重点:进程概念、存储管理(尤其虚拟存储)的各种策略、文件系统的管理、设备的管理和配置。
结合具体现代操作系统加深理解。
了解难点:进程的概念及其与程序的区别、进程间同步与互斥的正确实现、虚拟设备与虚拟存储。
Unix,Windows NT的系统结构、功能特点。
(三)课程的教学方法与手段1、本课程概念多、较抽象、涉及面广,因此教学形式以讲授方式为主。
约佔80%。
实验与自学约佔20%。
教师应该提供自学提纲并适当辅导。
操作系统一、1.什么是操作系统?从资源管理看操作系统的功能有哪些?答:(1).操作系统是一个系统软件,它能有效地管理和控制电脑系统中的各种硬件和软件资源、合理组织电脑的工作流程,方便用户使用的程序和数据的集合。
(2).a.处理机管理:分配和控制处理机 b.存储器管理:分配及回收内存c. I/O(Input/Output)设备管理:I/O分配与操作d.文件管理:文件存取、共享和保护〔详见课本P2-3〕2.什么叫并发性?什么叫并行性?答:并发性:两个或两个以上事件在同一时间间隔内发生。
并行性:两个或两个以上事件在同一时刻发生。
3.试从交互性、及时性以及可靠性方面,将分时系统与实时系统进行比较。
答:及时性:实时系统要求更高[分时系统:秒级(一般情况〕实时系统: 微秒级甚至更小] 交互性:分时系统交互性更强可靠性:实时系统要求更高〔详见课本P9和P11〕三、1.在操作系统中为什么要引入进程的概念?它与程序的区别和联系是怎样的?答:〔1〕程序在并发执行方式下,运行时具有异步性的特征,“程序”这个静态概念已经不足以描述程序的执行过程。
这样,就需要一个数据结构PCB来记录程序的状态,以及控制其状态转换所需的一些信息。
因此,将PCB、程序、数据三者组成一个完整的实体,就是进程实体。
进程是程序的一次执行,引入进程的概念,便于操作系统对于程序的运行进行控制。
〔2〕区别:1〕进程是指令的有序集合,是静态的,进程是程序的执行,是动态的。
2〕进程的存在是暂时的,程序的存在是永久的。
3〕进程的组成应包括程序和数据。
除此之外,进程还应由记录进程状态信息的“进程控制块”组成。
联系:程序是构成进程的组成部分之一,一个进程的运行目标是执行它所对应的程序。
如果没有程序,进程就失去了其存在的意义。
从静态的角度看,进程由程序、数据和进程控制块三部分组成。
2.什么是进程的互斥与同步?答:进程互斥:指两个或两个以上的进程由于竞争资源而形成的制约关系。