第四静态电磁场的求解
- 格式:ppt
- 大小:523.50 KB
- 文档页数:62
第四章 准静态电磁场4.1 准静态电磁场1.电准静态场由麦克斯韦方程组知,时变电场由时变电荷和时变磁场产生的感应电压产生。
时变电荷产生库仑电场,时变磁场产生感应电场。
在低频情况下,一般时变磁场产生的感应电场远小于时变电荷产生的库仑电场,可以忽略。
此时,时变电场满足ρ=∙∇≈⨯∇D 0E 称为电准静态场。
可见,电准静态场与静电场类似,可以定义时变电位函数ϕ ,即ϕ-∇=E且满足泊松方程ερϕ-=∇2 与电准静态场对应的时变磁场满足 0t =∙∇∂∂+=⨯∇B DE H γ 2.磁准静态场由麦克斯韦方程组知,时变磁场由时变传导电流和时变电场产生的位移电流产生。
在低频情况下,一般位移电流密度远小于时变传导电流密度,可以忽略。
此时,时变磁场满足0=∙∇≈⨯∇B J H c称为磁准静态场。
可见,磁准静态场与恒定磁场类似,可以定义时变矢量位函数A ,即A B ⨯∇=且满足矢量泊松方程c J A μ-=∇2与磁准静态场对应的时变电场满足ρ=∙∇∂∂-=⨯∇D B E t例1:图示圆形平板电容器,极板间距d = 0.5 cm ,电容器填充εr =5.4的云母介质。
忽略边缘效应,极板间外施电压t t u 314cos 2110)(=V ,求极板间的电场与磁场。
[解]:极板间的电场由极板上的电荷和时变磁场产生。
在工频情况下,忽略时变磁场的影响,即极板间的电场为电准静态场。
在如示坐标系下,得()()()V/m t 31410113t 31410501102d u z 4z 2z e e e E -⨯=-⨯⨯=-=-cos .cos . 由全电流定律得出,即由()z z 20r 4Sl t 31431410113d t H 2d e e S D l H ∙-π⨯⨯-=∙∂∂=π=∙⎰⎰ρεερφsin . 极板间磁场为φφφρe e H t 314103352H 4sin .-⨯== A/m也可以由麦克斯韦方程直接求解磁场强度,如下tt 0r ∂∂=∂∂=⨯∇E D H εε 展开,得t 314106694H 14sin .)(-⨯=∂∂φρρρ 解得φφφρe e H t 314103352H 4sin .-⨯== A/m 讨论:若考虑时变磁场产生的感应电场,则有tt ∂∂-=∂∂-=⨯∇H B E 0μ 展开,得t E z 314cos 103.231440ρμρ-⨯⨯-=∂∂- 解得 t E z 314cos 10537.428ρ-⨯= V/m可见,在工频情况下,由时变磁场产生的感应电场远小于库仑电场。
第3章 静态电磁场及其边值问题的解3.1 基本内容概述静态电磁场包括静电场、恒定电场和恒定磁场。
本章分别讨论了它们的基本方程和边界条件,位函数,能量和力,电容、电阻和电感,最后介绍静态场边值问题的几种解法(镜像法、分离变量法和有限差分法)。
3.1.1静电场1.基本方程和边界条件基本方程的微分形式(3.1)(3.2)ρ∇=∇⨯=D E基本方程的积分形式(3.3)(3.4)d d d 0S VCVρ==⎰⎰⎰D SE l边界条件()12n s ρ-=e D D 或 12n n s D D ρ-= (3.5) ()120n ⨯-=e E E 或 120t t E E -= (3.6)2.电位函数(1)电位函数及其微分方程根据电场的无旋性(0∇⨯=E ),引入电位函数ϕ,使E ϕ=-∇ (3.7) 电位函数ϕ与电场强度E 的积分关系是d ϕ=⎰E l (3.8)在均匀、线性和各向同性电介质中,已知电荷分布求解位函数点电荷()14'ii q ϕπε=-∑r r r (3.9) 体密度分布电荷 ()()'1d '4'VV ρϕπε=-⎰r r r r (3.10) 面密度分布电荷()()'1d '4'S SS ρϕπε=-⎰r r r r (3.11)线密度分布电荷 ()()'1d '4'l ll ρϕπε=-⎰r r r r (3.12)在均匀、线性和各向同性电介质中,电位函数满足泊松方程()()2ρϕε∇=-r r (3.13) 或拉普拉斯方程(0ρ=时)()20ϕ∇=r (3.14)(2)电位的边界条件12ϕϕ= (3.15a ) 1212S n nϕϕεερ∂∂-=-∂∂ (3.15b ) 3. 电场能量和电场力 (1)能量及能量密度分布电荷的电场能量 1d 2e V W V ρϕ=⎰ (3.16) 多导体系统电场能量 112Ne i i i W q ϕ==∑ (3.17)能量密度为 12e w =D E (3.18)(2)电场力 用虚位移法求电场力e i iq W F g =∂=-∂常数(3.19a )e i iW F g ϕ=∂=∂常数(3.19b )4.电容及部分电容在线性和各向同性电介质中,两导体间的电容为qC U=多导体系统,每个导体的电位不仅与本身所带的带有关,还与其它导体所带电荷有关。