(完整版)新人教版八年级数学因式分解练习题
- 格式:doc
- 大小:178.51 KB
- 文档页数:5
八年级因式分解练习题及答案【篇一:新人教版八年级数学因式分解过关文档练习题测试题有答案】>1.将下列各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将下列各式分解因式3322(1)xy﹣xy (2)3a﹣6ab+3ab.3.分解因式222222 (1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232 (1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y(4)4+12(x ﹣y)+9(x﹣y)5.因式分解:(1)2am﹣8a (2)4x+4xy+xy23226.将下列各式分解因式:322222 (1)3x﹣12x (2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y223 (2)(x+2y)﹣y228.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把下列各式分解因式:42422 (1)x﹣7x+1 (2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把下列各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2. 3243222242432因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y); 222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322 (1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解. 22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2); 322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将下列各式分解因式:322222(1)3x﹣12x (2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).223222328.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解; 222422222424322222222【篇二:数学八年级上:因式分解练习题及答案解析】数a,b,c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有() a.1个 b.2个c.3个 d.4个a.1 b.2c.3 d.43、△abc的内角a和b都是锐角,cd是高,若=,则△abc是() a.直角三角形 b.等腰三角形c.等腰直角三角形d.等腰三角形或直角三角形4、对于任意整数n,多项式(n+11)2-(n+2)2都能被()整除. a.9 b.2c.11 d.n+95、已知a-b=1,则a2-b2-2b的值为()a.4b.3 c.1 d.06、如果x2+x-1=0,那么代数式x3+2x2-7的值为()a.6 b.8c.-6d.-87、如果x2+3x-3=0,则代数式x3+3x2-3x+3的值为()a.0 b.-3 c.3d.8、设x2- x+7=0,则x4+7x2+49=()c.-d.0 a.7b.二、填空题9、设10、已知关于x的方程x2-nx+m=0有一个根是m(m≠0),则11、若ab=3,a+b=4,则a2b+ab212、设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则13、已知a+b=3,ab=-1,则a2b+ab2. = .14、已知m2+m-1=0,那么代数式m3+2m2-2011的值是15、甲、乙两农户各有两块地,如图所示,今年,这两个农户决定共同投资搞饲养业,为此,他们准备将这4块土地换成一块地,那块地的宽为(a+b)米,为了使所换土地的面积与原来4块地的总面积相等,交换之后的土地应该是米.三、解答题16、我们学过因式分解的概念,在计算多项式的过程中,如果能适当地分解因式进行化简,会使得计算更为简单.我们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,如果把质因数按照从小到大的顺序排在一起,相同因数的积写成幂的形式,那么这种分解方法是唯一的.请你学习例题的解法,完成问题的研究.例:试求5746320819乘以125的值.请根据例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余117、按下面规则扩充新数:已有a和b两个数,可按规则c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规则操作三次得到扩充的最大新数;②能否通过上述规则扩充得到新数5183?并说明理由1、正整数a,b,c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有()a.1个 b.2个 c.3个 d.4个c【解答】分析:先将a+bc+b+ca=24 可以化为(a+b)(c+1)=24,然后根据24分解为大于等于2的两个正整数的乘积有几种组合讨论是否符合题意即可得出答案.解答:解:a+bc+b+ca=24 可以化为(a+b)(c+1)=24,其中a,b,c都是正整数,并且其中两个数相等,令a+b=a,c+1=c 则a,c为大于2的正整数,②、a=3,c=8时,c=7,a+b=3,无法得到满足等腰三角形的整数解;③、a=4,c=6时,c=5,a+b=4,无法得到满足等腰三角形的整数解;④、a=6,c=4时,c=3,a+b=6,可以得到a=b=c=3,可以组成等腰三角形;⑤、a=8,c=3时,c=2,a+b=8,可得a=b=4,c=2,可以组成等腰三角形,a=b=4是两个腰;⑥、a=12,c=2时,可得 a=b=6,c=1,可以组成等腰三角形,a=b=6是两个腰.∴一共有3个这样的三角形.a.1 b.2c.3 d.4b【解答】分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.∴f(2)=是正确的;∴f(24)==,故(2)是错误的;∴f(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则f(n)=1,故(4)是正确的.∴正确的有(1),(4).故选b.点评:本题考查题目信息获取能力,解决本题的关键是理解此题的定义:所有这种分解中两因数之差的绝对值最小,f(n)=(p≤q). 3、△abc的内角a和b都是锐角,cd是高,若=,则△abc是() a.直角三角形 b.等腰三角形c.等腰直角三角形d.等腰三角形或直角三角形d【解答】分析:分别从当ad=bd时,可得△abc是等腰三角形;当ac2=ad?ab,bc2=bd?ab时,△abc是直角三角形.解答:∵=,解:①若ad=bd,∴ac=bc,此时cd是高,符合题意,即△abc是等腰三角形;②∵=,∴==,∴当ac2=ad?ab,bc2=bd?ab时成立,即,∵∠a是公共角,∴△abc∽△acd,∴△abc是直角三角形;∴△abc是等腰三角形或直角三角形.故选d.点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质以及直角三角形的判定.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.4、对于任意整数n,多项式(n+11)2-(n+2)2都能被()整除. a.9 b.2c.11 d.n+9a【解答】分析:将多项式利用平方差公式分解因式,由n为整数,得到2n+13为整数,可得出多项式能被9整除.解答:解:多项式(n+11)2-(n+2)2=[(n+11)+(n+2)][(n+11)-(n+2)]=9(2n+13),∵n为整数,∴2n+13为整数,则多项式(n+11)2-(n+2)2都能被9整除.故选a 点评:此题考查了因式分解的应用,熟练掌握平方差公式是解本题的关键.5、已知a-b=1,则a2-b2-2b的值为()a.4b.3 c.1 d.0c【解答】分析:先将原式化简,然后将a-b=1整体代入求解.解答:解:∵a-b=1,∴a2-b2-2b=(a+b)(a-b)-2b=a+b-2b=a-b=1.故选c.点评:此题考查的是整体代入思想在代数求值中的应用.6、如果x2+x-1=0,那么代数式x3+2x2-7的值为() a.6b.8c.-6d.-8 c【解答】分析:由x2+x-1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x-1=0得x2+x=1,∴x3+2x2-7=x3+x2+x2-7,=x(x2+x)+x2-7,=x+x2-7,=1-7,=-6.故选c.点评:本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x 的值,然后利用“整体代入法”求代数式的值. 7、如果x2+3x-3=0,则代数式x3+3x2-3x+3的值为()a.0 b.-3 c.3d.c【解答】分析:先对所求代数式的前三项提取公因式x,再利用整体代入来求值.解答:解:当x2+3x-3=0时,x3+3x2-3x+3,=x(x2+3x-3)+3,=3.故选c.点评:本题考查提公因式法分解因式,关键是提取公因式后出现已知条件的形式,然后利用整体代入求解.8、设x2-d x+7=0,则x4+7x2+49=() a.7b.c.-d.0【篇三:八年级因式分解练习题精选】:(30分)7、x2?(_____) x?2?(x?2)(x?_____)8、已知1?x?x2???x2004?x2005?0,则x2006?________.9、若16(a?b)2?m?25是完全平方式m=________。
因式分解中考频度:★★★☆☆ 难易程度:★★☆☆☆1.下列各式由左边到右边的变形中,是分解因式的是A .()a x y ax ay +=+B .244(4)4x x x x -+=-+C .42216(4)(4)x x x -=+-D .21055(21)x x x x -=- 2.把多项式24a a -分解因式的正确结果是A .a (a –4)B .(a +2)(a –2)C .a (a +2)(a –2)D .2(2)a -–4 3.下列各式中,能用完全平方公式分解因式的是A .16x 2+1B .x 2+2x –1C .a 2+2ab +4b 2D .x 2–x +144.(-2)2001+(-2)2002等于A .-22001B .-22002C .22001D .-25.计算:1252-50×125+252=A .100B .150C .10000D .225006.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值A .大于零B .等于零C .小于零D .不能确定7.113-11不能被下列哪个数整除?A .13B .12C .11D .108.分解因式:23(2)2(2)a a +-+=__________.9.若多项式x 2−mx −21可以分解为(x +3)(x −7),则m =__________.10.若x m =5,x n =6,则x m –x m +2n =__________.11.若(17x –11)(7x –3)–(7x –3)(9x –2)=(ax +b )(8x –c ),其中a ,b ,c 是整数,则a +b +c 的值等于__________.12.分解因式x2+ax+b,甲看错了a值,分解的结果是(x–3)(x+2),乙看错了b值,分解的结果是(x–2)(x–3),那么x2+ax+b分解因式正确的结果应该是__________.13.利用简便方法计算:(1)2001×1999;学=科网(2)8002-2×800×799+7992.14.已知2246130x y x y+-++=,求2269x xy y-+的值.15.已知实数m,n满足22m n=+,22n m=+,且m n≠.(1)求m n+的值;(2)求n mm n+的值.16.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2–1+x2=x2+2xy+y2–1=(x+y)2–1=(x+y+1)(x+y–1);(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x–3=x2+2x+1–4=(x+1)2–22=(x+1+2)(x+1–2)=(x+3)(x–1).请你仿照以上方法,探索并解决下列问题:(1)分解因式:22-+-a b a b(2)分解因式:x2–6x–7;(3)分解因式:22a ab b+-.4517.发现任意五个连续整数的平方和是5的倍数.验证(1)(–1)2+02+12+22+32的结果是5的几倍?学=科网(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.1.【答案】D【解析】A,是多项式乘法,故错误.B,等式的右边不是积的形式,故错误.C,分解不彻底.故错误.D,提公因式法.正确.故选D.2.【答案】A【解析】24-=a(a–4),故选A.a a3.【答案】D【解析】A.16x2+1只有两项,不能用完全平方公式分解;B.x2+2x–1,不能用完全平方公式分解;C.a2+2ab+4b2,不能用完全平方公式分解;D.x2–x+14=21()2x-,能用完全平方公式分解.故选D.4.【答案】C【解析】(-2)2001+(-2)2002=(-2)2001×(1-2)=22001,故选C.5.【答案】C【解析】原式=1252-2×25×125+252=(125-25)2=1002=10000.故选C.9.【答案】4【解析】由题意,得x2–mx–21=(x+3)(x–7),对(x+3)(x–7)进行整式乘法运算,得(x+3)(x–7)=x2–4x–21,∴x2–mx–21=x2–4x–21,对照各项系数可知,m=4.故答案为:4.10.【答案】–175【解析】∵x m=5,x n=6,∴(x n)2=62,∴x2n=36,∴x m–x m+2n=x m(1–x2n)=5×(1–36)=–175.故答案为:–175.11.【答案】13【解析】(17x–11)(7x–3)–(7x–3)(9x–2)=(7x–3)[(17x–11)–(9x–2)]=(7x–3)(8x–9).∵(17x–11)(7x–3)–(7x–3)(9x–2)=(ax+b)(8x–c)=(7x–3)(8x–9),∴a=7,b=–3,c=9,∴a+b+c=7–3+9=13.故答案为:13.12.【答案】(x+1)(x–6)【解析】∵分解因式x2+ax+b,甲看错了a值,分解的结果是(x–3)(x+2),∴(x–3)(x+2)=x2–x–6,∴b=–6,∵乙看错了b值,分解的结果是(x–2)(x–3),∴(x–2)(x–3)=x2–5x+6,∴a=–5,∴x2+ax+b=x2–5x–6=(x+1)(x–6).故答案为:(x+1)(x–6).13.【解析】(1)2001×1999=(2000+1)(2000-1)=2220001-=4000000-1=3999999.(2)8002-2×800×799+7992=2(800799)-=1.14.【解析】∵x 2+y 2−4x +6y +13=(x −2) 2+(y +3) 2=0,∴x −2=0,y +3=0,即x =2,y =−3,则原式=(x −3y ) 2=112=121.15.【解析】(1)∵22m n =+,22n m =+,∴22m n n m -=-,∴()(1)0m n m n -++=,又∵m n ≠,∴1m n +=-.(2)∵22m n =+,22n m =+,∴224m n n m +=++.又∵1m n +=-,∴223m n +=.∵222()2m n m n mn +=++,∴1mn =-.∴223n m m n m n mn ++==-.16.【解析】(1)22a b a b -+-=()()()a b a b a b +-+-=()(1)a b a b -++;(2)原式=22223337x x -⨯⨯+--=2(3)16x --=(34)(34)x x -+--=(1)(7)x x +-;(3)原式=222222(2)(2)5a a b b b b +⨯⨯+--=22(2)9a b b +-=(23)(23)a b b a b b +++-=(5)()a b a b +-.17.【解析】验证 (1)(–1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(–1)2+02+12+22+32的结果是5的3倍;延伸设三个连续整数的中间一个为n,则其余的2个整数是n–1,n+1,它们的平方和为:(n–1)2+n2+(n+1)2=n2–2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.。
2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。
人教版八年级数学因式分解练习题一、选择题(每小题分,共分)1.下列运算中,正确的是( )A. 652x x x =B.555)(b a ab =C.2523a a a =+D.523)(x x =2.下列从左边到右边的变形,是因式分解的是( )(A )(B ) (C ) (D )3.下列各式是完全平方式的是( )A 、B 、C 、D 、 4.下列多项式中能用平方差公式分解因式的是( )(A ) (B ) (C ) (D )5.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A. –3B. 3C. 0D. 1 二、填空题(每小题分,共分)6.在实数范围内分解因式7.8.(1)当x ___________时,()04-x 等于__________; 9.若 是一个完全平方式,那么m 的值是__________。
10.比较3555,4444,5333的大小. > >三、解答题11.计算:(每小题分,共分)()()=-÷-42242a a12.2,3==n m x x ,求n m x 23+、n m x 23-的值13. 因式分解:2x 2y -8xy +8y a 2(x -y)-4b 2(x -y)y y x 164-14.已知:2,5-==+ab b a 求:(1)22b a + (2)b a -15.当a ,b 为何值时,多项式a 2+b 2-4a+6b+18有最小值?并求出这个最小值.因式分解练习专题练习1. 利用乘法公式,展开下列各式:(1) ( 9x – 5 )2=__________________。
(2) ( 2x + 7 ) ( 7 – 2x ) =__________________。
2. 化简– 2 ( x2 + 3x – 5 ) + 4x2 – 7x + 5 =__________________。
(2) 展开 ( – 2x + 3 ) ( 4x – 5 ) =______。
因式分解练习题一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x−1=x(x +2)+1B. (a +b)(a−b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax 2−a =a(x 2−1)2.下列各式由左边到右边的变形中,是分解因式的为( )A. 8(x +y)=8x +8yB. (x−y )2=x 2−2xy +y 2C. 10x 2+5x =5x(2x +1)D. x 2−4+3x =(x +2)(x−2)+3x 3.因式分解(x +y )2−2(x 2−y 2)+(x−y )2的结果为( )A. 4(x−y )2B. 4x 2C. 4(x +y )2D. 4y 24.多项式36a 2bc−48ab 2c +24abc 中的各项的公因式是 ( )A. 12a 2b 2c 2B. 6 abcC. 12 abcD. 36a 2b 2c 25.多项式8a 3b 2+12a 3bc−4a 2b 中,各项的公因式是( )A. a 2bB. 4a 2bC. −4a 2bD. −a 2b 6.下列各式中,不能用完全平方公式分解的有( ) ①x 2−10x +25; ②4a 2+4a−1; ③x 2−2x−1; ④−m 2+m−14; ⑤4x 4−x 2+14.A. 1个B. 2个C. 3个D. 4个7.多项式a 2+2a−b 2−2b 分解因式的结果是( )A. (a−b)(a +2)(b +2)B. (a−b)(a +b +2)C. (a−b)(a +b)+2D. (a 2−2b)(b 2−2a)8.下列多项式中不能用平方差公式因式分解的是( )A. a 2−b 2B. 49x 2−y 2z 2C. −x 2−y 2D. 16m 2n 2−25p 29.因式分解b 2(a−3)+b(a−3)的正确结果是( )A. (a−3)(b2+b)B. b(a−3)(b+1)C. (a−3)(b2−b)D. b(a−3)(b−1)10.多项式x2−mxy+9y2能用完全平方公式因式分解,则m的值是().A. 3B. 6C. ±3D. ±611.已知a−b=3,a+c=−1,则代数式ac−bc+a2−ab的值为( )A. 4B. 3C. −3D. −412.已知{3x−1<a2x>6−b的解集为−1<x<2,则a2−b2的值为( )A. −39B. −3C. 3D. 39二、填空题13.分解因式:(2a−1)2+8a=________.14.因式分解:a2b−4ab+4b=______.15.若a+b=2,ab=−3,则式子a3b+2a2b2+ab3的值为_______.16.多项式−ab(a−b)2+a(b−a)2−ac(a−b)2因式分解时,所提取的公因式应是.三、计算题17.把下列各式分解因式:(1)a2−5a;(2)ab+ac;(3)4a3b2−10ab3c;(4)−3ma3+6ma2−12ma;(5)6p(p+q)−4q(p+q).四、解答题18.先分解因式,然后计算求值:(x+y)(x2+3xy+y2)−5xy(x+y),其中x=6.6,y=−3.4.19.已知a=12m+1,b=12m+2,c=12m+3,求a2+2ab+b2−2ac+c2−2bc的值(用含m的代数式表示).20.老师在黑板上写了三个算式:52−32=8×2,92−72=8×4,152−32=8×27.王华接着又写了两个具有同样规律的算式:112−52=8×12,152−72=8×22,….(1)请你再写出两个(不同于上面的算式)具有上述规律的算式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.答案和解析1.【答案】C【解析】【分析】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.根据因式分解的意义分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C2.【答案】C【解析】【分析】此题主要考查了因式分解的意义,正确把握定义是解题关键.直接利用分解因式的定义分析得出答案.【解答】解:A.8(x+y)=8x+8y,是整式乘法运算,故此选项错误;B.(x−y)2=x2−2xy+y2,是整式乘法运算,故此选项错误;C.10x2+5x=5x(2x+1),是分解因式,符合题意;D.x2−4+3x=(x+2)(x−2)+3x,不符合分解因式的定义,故此选项错误.故选C.3.【答案】D【解析】解:原式=[(x+y)−(x−y)]2,=(x+y−x+y)2,=4y2,故选:D.利用完全平方进行分解即可.此题主要考查了公式法分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.4.【答案】C【解析】【分析】此题主要考查了公因式的确定,根据公因式的定义确定是解决问题的关键,根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.【解答】解:多项式36a2bc−48ab2c+24abc各项的公因式是:12 abc.故选C.5.【答案】B【解析】【分析】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.根据公因式的定义得出即可.【解答】解:多项式8a3b2+12a3bc−4a2b中各项的公因式是4a2b,故答案选B.6.【答案】C【解析】【分析】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.分别利用完全平方公式分解因式得出即可.【解答】 ①x2−10x+25=(x−5)2,不符合题意; ②4a2+4a−1不能用完全平方公式分解; ③x2−2x−1不能用完全平方公式分解; ④−m2+m−14=−(m2−m+14)=−(m−12)2,不符合题意; ⑤4x4−x2+14不能用完全平方公式分解.故选C.7.【答案】B【解析】【分析】本题考查用分组分解法、提取公因式法与公式法的综合运用.难点是采用两两分组还是三一分组.当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2+2a−b2−2b先变形为a2−b2+2a−2b可分成前后两组来分解.前两项组合利用平方差公式,后两项组合利用提公因式法,最后再次提公因式(a−b)即可.【解答】解:a2+2a−b2−2b=(a2−b2)+(2a−2b)=(a+b)(a−b)+2(a−b)=(a−b)(a+b+2).故选B.8.【答案】C【解析】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A.a2−b2=(a+b)(a−b),能用平方差公式分解,故此选项不合题意;B.49x2−y2z2=(7x+yz)(7x−yz),能用平方差公式分解,故此选项不合题意;C.−x2−y2不能用平方差公式分解,故此选项符合题意;D.16m2n2−25p2=(4mn−5p)(4mn+5p),能用平方差公式分解,故此选项不合题意;故选C.9.【答案】B【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式b(a−3)即可.【解答】解:原式=b(a−3)(b+1).故选B.10.【答案】D【解析】【分析】本题考查因式分解的应用,完全平方公式.由多项式x2−mxy+9y2能用完全平方公式因式分解,得x2−mxy+9y2=(x±3y)2,再用完全平方公式展开,即可得x2−mxy+9 y2=x2±6xy+9y2,最后由多项式对应项系数相等即可得出答案.【解答】解:由题意,得x2−mxy+9y2=(x±3y)2,∴x2−mxy+9y2=x2±6xy+9y2,∴−m=±6,∴m=±6,故选D.11.【答案】C【解析】【分析】本题考查了因式分解的应用:用因式分解解决求值问题,利用因式分解简化计算问题.本题的关键是把所求代数式分解因式.先利用分组分解的方法把ac−bc+a2−ab因式分解为(a−b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac−bc+a2−ab,=c(a−b)+a(a−b),=(a−b)(c+a),∵a−b=3,a+c=−1,∴ac−bc+a2−ab=3×(−1)=−3.故选C.12.【答案】A【解析】【分析】此题考查了因式分解−运用公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.表示出不等式组的解集,确定出a与b的值,即可求出所求.【解答】解:{3x−1<a2x>6−b,解得:{x<a+13x>6−b2,∵不等式的解集为为−1<x<2,∴6−b2=−1,a+13=2,解得:a=5,b=8,则原式=(a+b)(a−b)=13×(−3)=−39,故选A.13.【答案】(2a+1)2【解析】【分析】本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.【解答】解:(2a−1)2+8a=4a2−4a+1+8a=4a2+4a+1=(2a+1)2.故答案为(2a+1)2.14.【答案】b(a−2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2−4a+4)=b(a−2)2.故答案为:b(a−2)2.15.【答案】−12【解析】【分析】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=−3×4,=−12.故答案为:−12.16.【答案】−a(a−b)2【解析】【分析】此题主要考查了提公因式法分解因式,注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.首先把可把(b−a)2变成(a−b)2,再直接提取公因式−a(a−b)2即可.【解答】解:−ab(a−b)2+a(a−b)2−ac(a−b)2=−a(a−b)2(b+1−c),故答案为−a(a−b)2.17.【答案】解:(1)a2−5a=a(a−5);(2)ab+ac=a(b+c);(3)4a3b2−10ab3c=2ab2(2a2−5bc);(4)−3ma3+6ma2−12ma=−3ma(a2−2a+4);(5)6p(p+q)−4q(p+q)=2(p+q)(3p−2q).【解析】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.(1)提取公因式a,即可得出答案;(2)提取公因式a,即可得出答案;(3)提取公因式2ab2,即可得出答案;(4)提取公因式−3ma,即可得出答案;(5)提取公因式2(p+q),即可得出答案.18.【答案】(x+y)(x2+3xy+y2)−5xy(x+y)=(x+y)(x2+3xy+y2−5xy)=(x+y)(x2−2xy+y2)=(x+y)(x−y)2当x=6.6,y=−3.4时,原式=3.2×102=320.【解析】本题考查求代数式的值,关键是对待求式进行因式分解,然后将x与y的值代入计算即可19.【答案】解:a2+2ab+b2−2ac+c2−2bc=(a+b)2−2c(a+b)+c2=(a+b−c)2∵a =12m +1,b =12m +2,c =12m +3∴原式=(a +b )2−2c(a +b)+c 2=(a +b−c )2将a ,b ,c 的值代入得=[(12m +1)+(12m +2)−(12m +3)]2=14m 2【解析】此题考查代数式求值,注意利用完全平方公式因式分解,简化计算的方法与步骤.首先把代数式a 2+2ab +b 2−2ac−2bc +c 2利用完全平方公式因式分解,再代入求得数值即可.20.【答案】解:(1)112−92=8×5,132−112=8×6.(2)规律:任意两个奇数的平方差等于8的倍数.(3)证明:设m ,n 为整数,两个奇数可表示2m +1和2n +1,则(2m +1)2−(2n +1)2=4(m−n)(m +n +1).当m ,n 同是奇数或偶数时,(m−n)一定为偶数,所以4(m−n)一定是8的倍数.当m ,n 一奇一偶时,则(m +n +1)一定为偶数,所以4(m +n +1)一定是8的倍数所以,任意两奇数的平方差是8的倍数.【解析】通过观察可知,等式左边一直是两个奇数的平方差,右边总是8乘以一个数.根据平方差公式,把等式左边进行计算,即可得出结论任意两个奇数的平方差等于8的倍数.本题为规律探究题,考查学生探求规律解决问题的思维能力.。
因式分解 同步练习一、选择题:1.若(2x)n −81 = (4x 2+9)(2x+3)(2x −3),那么n 的值是( )A .2B . 4C .6D .82.若9x 2−12xy+m 是两数和的平方式,那么m 的值是( )A .2y 2B .4y 2C .±4y 2D .±16y 23.把多项式a 4− 2a 2b 2+b 4因式分解的结果为( )A .a 2(a 2−2b 2)+b 4B .(a 2−b 2)2C .(a −b)4D .(a+b)2(a −b)24.把(a+b)2−4(a 2−b 2)+4(a −b)2分解因式为( )A .( 3a −b)2B .(3b+a)2C .(3b −a)2D .( 3a+b)25.计算:(−21)2001+(−21)2000的结果为( ) A .(−21)2003 B .−(−21)2001 C .21 D .−21 6.已知x ,y 为任意有理数,记M = x 2+y 2,N = 2xy ,则M 与N 的大小关系为( ) A .M>N B .M≥N C .M≤N D .不能确定7.对于任何整数m ,多项式( 4m+5)2−9都能( )A .被8整除B .被m 整除C .被(m −1)整除D .被(2n −1)整除8.将−3x 2n −6x n 分解因式,结果是( )A .−3x n (x n +2)B .−3(x 2n +2x n )C .−3x n (x 2+2)D .3(−x 2n −2x n )9.下列变形中,是正确的因式分解的是( )A . 0.09m 2− 4916n 2 = ( 0.03m+ 74)( 0.03m −74) B .x 2−10 = x 2−9−1 = (x+3)(x −3)−1C .x 4−x 2 = (x 2+x)(x 2−x)D .(x+a)2−(x −a)2 = 4ax10.多项式(x+y −z)(x −y+z)−(y+z −x)(z −x −y)的公因式是( )A .x+y −zB .x −y+zC .y+z −xD .不存在11.已知x 为任意有理数,则多项式x −1−41x 2的值( ) A .一定为负数B .不可能为正数C .一定为正数D .可能为正数或负数或零二、解答题:分解因式:(1)(ab+b)2−(a+b)2(2)(a 2−x 2)2−4ax(x −a)2(3)7x n+1−14x n +7x n −1(n 为不小于1的整数)参考答案:一、选择题:1.B 说明:右边进行整式乘法后得16x 4−81 = (2x)4−81,所以n 应为4,答案为B .2.B 说明:因为9x 2−12xy+m 是两数和的平方式,所以可设9x 2−12xy+m = (ax+by)2,则有9x 2−12xy+m = a 2x 2+2abxy+b 2y 2,即a 2 = 9,2ab = −12,b 2y 2 = m ;得到a = 3,b = −2;或a = −3,b = 2;此时b 2 = 4,因此,m = b 2y 2 = 4y 2,答案为B .3.D 说明:先运用完全平方公式,a 4− 2a 2b 2+b 4 = (a 2−b 2)2,再运用两数和的平方公式,两数分别是a 2、−b 2,则有(a 2−b 2)2 = (a+b)2(a −b)2,在这里,注意因式分解要分解到不能分解为止;答案为D .4.C 说明:(a+b)2−4(a 2−b 2)+4(a −b)2 = (a+b)2−2(a+b)[2(a −b)]+[2(a −b)]2 =[a+b −2(a −b)]2 = (3b −a)2;所以答案为C .5.B 说明:(−21)2001+(−21)2000 = (−21)2000[(−21)+1] = (21)2000 •21= (21)2001 = −(−21)2001,所以答案为B . 6.B 说明:因为M −N = x 2+y 2−2xy = (x −y)2≥0,所以M≥N .7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).8.A9.D 说明:选项A ,0.09 = 0.32,则 0.09m 2−4916n 2 = ( 0.3m+74n)( 0.3m −74n),所以A 错;选项B 的右边不是乘积的形式;选项C 右边(x 2+x)(x 2−x)可继续分解为x 2(x+1)(x −1);所以答案为D .10.A 说明:本题的关键是符号的变化:z −x −y = −(x+y −z),而x −y+z≠y+z−x ,同时x −y+z≠−(y+z −x),所以公因式为x+y −z .11.B 说明:x −1−41x 2 = −(1−x+41x 2) = −(1−21x)2≤0,即多项式x −1−41x 2的值为非正数,正确答案应该是B .二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) =a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7x n−1(x−1)2说明:原式= 7x n−1•x2−7x n−1•2x+7x n−1 = 7x n−1(x2−2x+1) = 7x n−1(x−1)2.人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式. ⑵单项式⨯. ⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()nm mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).2021-2022学年度秋季八年级上学期人教版数学。
14.3因式分解培优练习人教版2024—2025学年八年级上册秋季夯实基础1.因式分解:(1)a3b﹣2a2b2+ab3;(2)9a2(x﹣y)+4b2(y﹣x).2.分解因式(1)3a(b2+9)2﹣108ab2;(2)2b3﹣b2﹣6b+5a﹣10ab+3;(3)4x2﹣14xy+6y2﹣7x+y﹣2;3.因式分解:x2﹣4y2﹣2x+1.4.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0.∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知:x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣12a﹣16b+100=0,求△ABC的最大边c的值;(3)已知:a﹣5b+2c=20,4ab+8c2+20c+125=0,直接写出a的值.5.分解因式:x2+xy﹣6y2﹣2x+19y﹣15.能力提升1.已知a+b=2,ab=10,求:a3b+a2b2+ab3的值.2.若x2﹣2xy+2y2﹣2y+1=0,求x y的值.3.已知a=+2012,b=+2013,c=+2014,求a2+b2+c2﹣ab﹣bc﹣ca的值.4.若n2+n﹣1=0,求n3+2n2+2024的值.5.已知ab=﹣2,a﹣3b=5,求a3b﹣6a2b2+9ab3的值.6.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图①可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.请解答下列问题:(1)写出由图②可以得到的数学等式.(2)利用(1)中得到的结论,解决下面问题:若a+b+c=12,ab+ac+bc=35,求a2+b2+c2的值;(3)小明同学用图③中x个边长为a的正方形,y个宽为a,长为b的长方形,z个边长为b的正方形,拼出一个面积为(2a+b)(a+4b)的长方形,求x+y+z的值.7.所谓完全平方式,就是对一个整式M,如果存在另一个整式N,使M=N2,则称M是完全平方式,如:x4=(x2)2、x2+2xy+y2=(x+y)2,则称x4、x2+2xy+y2是完全平方式.(1)下列各式中是完全平方式的编号有.①a2+4a+4b2;②4x2;③x2﹣xy+y2;④y2﹣10y﹣25;⑤x2+12x+36;⑥﹣2a+49.(2)已知a、b、c是△ABC的三边长,满足a2+b2+2c2=2c(a+b),判定△ABC的形状.8.因式分解:x2﹣2xy+y2﹣25.9.因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.10.若a,b,c是△ABC的三边,满足a2(c2﹣a2)=b2(c2﹣b2),判断并说明△ABC的形状.11.分解因式(1)3a2﹣6ab+3b2;(2)9a2(x﹣y)+4b2(y﹣x).12.因式分解:(1)a4b﹣6a3b+9a2b;(2)n2(m﹣2)+4(2﹣m).13.把下列各式分解因式:(1)ax3﹣16ax;(2)(2x﹣3y)2﹣2x(2x﹣3y)+x2;(3)(m2+1)2﹣4m2.14.阅读:多项式ax2+bx+c(a≠0),当a,b,c取某些实数时,ax2+bx+c是完全平方式.例如:当a=1,b=﹣2,c=1时,ax2+bx+c=x2﹣2x+1=(x﹣1)2,发现:(﹣2)2=4×1×1;当a=1,b=6,c=9时,ax2+bx+c=x2+6x+9=(x+3)2,发现:62=4×1×9;….根据上述阅读材料解答下列问题:(1)分解因式:16x2﹣24x+9=.(2)若多项式ax2+bx+c(a≠0)是完全平方式,则a,b,c之间存在某种关系,用等式表示a,b,c之间的关系:.(3)在实数范围内,若关于x的多项式4x2+mx+25是完全平方式,求m的值.(4)求多项式x2+y2﹣4x+6y+15的最小值.。
第十四章测试卷一、选择题1.计算(a³)²÷a² 的结果是 ( )A. a³B. a⁴C. a⁷D. a⁸2.若(x−4)⁰=1,则x的取值范围是 ( )A. x≠4B. x>4C. x<4D. x≥43.下列因式分解正确的是( )A.2ax²−4ax=2a(x²−2x)B.−ax²+4ax−4a=−a(x−2)²C.x²+2xy+4y²=(x+2y)²D.−m²+n²=(−m+n)(−m−n)4.已知x+1x =5, 那么x2+1x2=( )A.10B.23C.25D.275.化简(a+b+c)²−(a−b+c)² 的结果为( )A.4ab+4bcB.4acC.2acD.4ab--4bc6.不等式(x+1)(x-2)>x(x+2)的解集是( )A.x>23 B.x>−23C.x<23 D.x<−237.已知((10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成( ax+b)(7x+c),其中a,b,c均为整数,则a-b+c的值为( )A.-12B.-4C.22D.388.长方形的面积是9a²−3ab+6a³,一边长是3a,则它的另一边长是( )A.3a²−b+2a²B.b+3a+2a²C.2a²+3a−bD.3a²−b+2a9.已知a²−2a−1=0, 则a⁴−2a³−2a+ 1 等于( )A.0B.1C.2D.310.如图,两个正方形的边长分别为a、b,如果a+b=18, ab=60,则图中阴影部分的面积为( )A.144B.72C.68D.36二、填空题11.计算: (18x3y2−12x2y3+x2y2)÷(−6x2y2)=12.分解因式:a²b+ab²-a-b= .13.若规定 a⊗b=10ᵃ×10ᵃ,如 2⊗3=10²×10³=10⁵,则 4⊗8为 .14.若a-b=2,a-c=1.则(2a−b−c)²+(c−a)²=.15.多项式 x²+y²−4x+6y+15的最小值是 .三、解答题16.(8分)计算:(1)[(m+n)(m−n)+(m−n)2−4m(m−n)]÷(2m);(2)(m+n+2)(m+n-2)-m(m+4n).17.(9分)把下列各式分解因式:(1)(x−1)+b²(1−x);(2)−3x⁷+24x⁵−48x³;(3)(x+3)(x+4)+(x²−9).18.(9分)化简并求值:(2a−b)²−(4a+b)(a−b)−2b²,其中 a=12,b=−13.19.(9分)如图,一块长为 (6a²+4b²)m,宽为 5a ⁴m 的长方形铁皮,在它的四个角上各剪去一个边长为 2a³m的小正方形,然后将剩余部分折成一个无盖的盒子,则这个盒子的表面积是多少?20.(9分)已知 2ⁿ=a,5ⁿ=b,20ⁿ= c.试探究a ,b ,c 之间有什么关系.21.(10分)已知 2⁴⁸−1可以被 60 至 70 之间的某两个数整除,求这两个数.22.(10分)阅读材料:常用的分解因式方法有提公因式法、公式法等,但有的多项式只用上述方法是无法分解的,如 x²−4y²+2x −4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程:x²−4y²+2x −4y=(x²−4y²)+(2x −4y )=(x+2y)(x-2y)+2(x-2y)=(x-2y)(x+2y+2).这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式: x²−6xy +9y²−3x +9y;(2)△ABC 的三边长a,b,c 满足 a²−b²−ac +bc =0,判断 △ABC 的形状.^23.(11分)在《乘法公式》中我们学习了完全平方公式:(a±b)²=a²±2ab +b².类比此公式,我们把( (a+b)ⁿ写成如下形式:(a+b)n=Ca n b0+C1a n−1b1+C2a n−2b2+⋯+C n−1ab n−1+C n a0b n,右边的多项式叫做(a+b)ⁿ的二项展开式.把C0,C1,C2,⋯,Cn−1,Cn叫做二项式的系数,C+C1+C2+⋯+Cn−1+Cn的和叫做二项式的系数之和.(1)仔细观察下列各式中系数的规律,并填空:①(a+b)¹的二项式的系数之和为,((a+b)²的二项式的系数之和为,((a+b)³的二项式的系数之和为;②请写出(a+b)¹⁰的二项式的系数之和: .(2)设(x+1)17=a17x17+a16x16+⋯+a1x+a0,求a1+a2+a3+⋯+ a₁₆+a₁₇的值;(3)你能在(2)的基础上求出a2+a4+a6+⋯+a14+a16的值吗? 若能,请写出过程,若不能,请说明理由.第十四章测试卷1、B2、A3、B4、B5、A6、D7、C8、C9、C 10、B11、-3x+2y-1612、(a+b)(ab-1)13、101214、10 15、216、(1)解:原式=(m²−n²+m²−2mn+n²−4m²+4mn)÷(2m)=(−2m²+2mn)÷(2m)=-m+n.(2)解:原式= (m+n)²−2²−m²−4mn=m²+2mn+n²−4−m²−44mn =n²−2mn−4.17、(1)解:原式= (x−1)−b²(x−1)=(x−1)(1−b²)=(x−1)(1−b)(1+b).(2)解:原式=−3x³(x⁴−8x²+16)=−3x³(x²−4)²=−3x³(x+2)(x−2)².(3)解:原式= (x+3)(x+4)+(x+3)(x−3)=(x+3)(x+4+x−-3) =(x+3)(2x+1). 18、解:原式=4a²−4ab+b²−(4a²−3ab−b²)−2b²=−ab,当 a=12,b=−13时,原式=−12×(−13)=16.19、解:由题意,得这个盒子的表面积为(6a²+4b²)⋅5a⁴−4×(2a³)²=30a⁶+20a⁴b²−16a⁶=(14a⁶+20a⁴b²)(m²).20、解:因为 c=20ⁿ=(4×5)ⁿ=4ⁿ×5ⁿ=(2²)ⁿ×5ⁿ=(2ⁿ)²×5ⁿ=a²b,所以a,b,c之间的关系是 c=a²b.21、解:248−1=(224+1)(224−1)=(224+1)(2¹²+1)(2¹²−1)=(224+1)) (2¹²+1)(2⁶+1)(2⁶−1)=(224+1)(2¹²+1)×65×63,所以这两个数为63和65.22、解:(1)x²−6xy+9y²−3x+9y=(x²−6xy+9y²)−(3x−9y)=(x−3y)²-3(x-3y)=(x-3y)(x-3y-3).(2)∵a²−b²−ac+bc=0,(a²−b²)−(ac−bc)=0,∴(a+b)(a−b)−c(a−b)=0,∴(a−b))[(a+b)-c]=0,∵a,b,c是△ABC的三边长,∴(a+b)−c>0,∴a− b=0,得 a=b,∴△ABC是等腰三角形.23.解:(1) ①2¹、 2²、2³ ② 2¹⁰ .(2)由(1)①得( (x+1)¹⁷的二项式的系数之和为2¹⁷,即 a₀+a₁+a₂+a3+⋯+a16+a17=217,当x=0时, 1=a0,∴a1+a2+a3+⋯+a16+a17=2¹⁷−1.(3)当x=1时, (1+1)17=217=a17×1+a16×1+⋯+a1×1+a=a17+a16+⋯+a1+a①,当x=-1 时, (−1+1)¹⁷=0=−a17+a16−⋯+a2−a1+a0②,①+②)得 2(a0+a2+a4+a6+⋯+a14一a16=1,∴a2+a4+a6+⋯+a14+a16=216−1.。
专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。
完全平方公式
【目标导航】
1.理解完全平方公式的意义;
2.能运用完全平方公式进行多项式的因式分解.
【例题选讲】
例1(1)把229124b ab a +-分解因式.(2)把2
2816y x xy +-分解因式.
(3)把24
11x x ++分解因式.(4)把xy y x 4422-+分解因式.
练习:把下列各式分解因式:
(5).1692
+-t t (6).4
12
r r +- (7).236121a a +-
(8).42242b b a a +-
例2.把下列各式分解因式:
(9).122++n n m m
(10).222n
m mn -- (11).ax y ax y ax ++2232
(12).22224)1(4)1(a a a a ++-+
练习:把下列各式分解因式:
(13).n n m m y y x x 42242510+-
(14).222y xy x -+-
(15)2
1222+-x x
(16)161)(21)(2+--
-y x y x (17)n n m m y y x x 2245105-+-
例3.把下列各式分解因式:
(18).222)1(4+-a a
(19).2)(4y x y x --
练习:把下列各式分解因式:
(20).222)41(+-m m
(21).222224)(b a b a -+
(22).)(42s t s s -+-
(23).1)3)(2)(1(++++x x x x
例4(24).已知054222=+++-b b a a 求b a ,的值.
【课堂操练】
一.填空:
(25).-2x ( )+29y =(x - 2
)
(26).+-244x x =-2(x 2) (27).++x x 32 =+x ( 2
) (28).++22520r r =( +52
)r
二.填空,将下列各式填上适当的项,使它成为完全平方式(222b ab a ++)的形式:
(29).+-x x 2
(30).++
2241y x (31).242x xy -+
(32).++
24414b a (33).++469n m
(34).+-x x 52
三.把下列各式分解因式:
(36).244x x +-
(37).49142++x x
(38).9)(6)(2++-+n m n m
(39).n n n x x x 7224212+-++
【课后巩固】
一.填空
1.( )2+=+2
2520y xy ( )2.
2.=+⨯-227987981600800( _- 2)= . 3.已知3=+y x ,则
222
121y xy x ++= . 4.已知0106222=++-+y x y x
则=+y x .
5.若4)3(2
+-+x m x 是完全平方式,则数m 的值是 .
二.把下列各式分解因式:
7.32231212x x y xy -+
8.442444)(y x y x -+
9.22248)4(3ax x a -+
10.2222)(4)(12)(9b a b a b a ++-+-
(11).2222224)(b a c b a --+
(12).22222)(624n m n m +-
(13).115105-++-m m m x x x
三.利用因式分解进行计算:
(14).4
19.36.7825.03.2541⨯-⨯+⨯ (15).2298196202202+⨯+
(16).225.15315.1845.184+⨯+
四.(17).将多项式1362+x 加上一个单项式,使它成为一个整式的平方.
五.(18).已知212=
-b a ,2=ab 求:42332444b a b a b a -+-的值.
(19).已知n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:
(1)a 与b 的平方和;
(2)a 与b 的积;
(3)
b
a a
b +.
【课外拓展】
(20).已知△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++2
22求证:此三角形为等边三角形.
(21).已知c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.
(22).求证:不论为x,y 何值,整式5422+-xy y x 总为正值.。