人教版八年级上册数学 因式分解
- 格式:doc
- 大小:71.00 KB
- 文档页数:5
用“换元法”分解因式我们的课本中介绍了对一个多项式进行因式分解的两种方法,比如提公因式法、运用公式法,这些方法都是最基础的因式分解方法.一些同学在解答课外题时,往往感到只用这些方法还是有点力不从心,于是他们纷纷找到李老师,请她“再传授几招,以便能够解答更多类型的因式分解题目”.李老师欣然同意,当场就为同学们介绍了一种因式分解的常用方法———换元法.李老师把换元法分解因式分成了三种情况.一、换单项式例1分解因式x6+16x3y+64y2.析解:注意到x6=(x3)2,若把单项式x3换元,设x3= m,则x6=m2,原式变形为m2+16my+64y2=(m+8y)2=(x3+8y)2.二、换多项式例2分解因式(x2+4x+6)(x2+6x+6)+x2.析解:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x2+6=m,则x2+4x+6=m+4x,x2+6x+6=m+6x,原式变形为(m+4x)(m+6x)+x2=m2+10mx+24x2+x2=m2+10mx+25x2=(m+5x)2=(x2+6+5x)2=2=(x+2)2(x+3)2.以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”.当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”.比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为m(m+2x)+x2=m2+2mx+x2=(m+x)2=(x2+4x+6+x)2=(x2+5x+6)2=2=(x+2)2(x+3)2.三、换系数例3分解因式x3+x2-2004×2005x.析解:此题若按照一般思路解答,很难奏效.注意到2004、2005两个数字之间的关系,把其中一个常数换元.比如,设2004=m,则2005=m+1.于是,原式变形为x3+x2-2004×2005x=x2(x+1)-m(m+1)x=x=x(x2+x-m2-m)=x=x=x(x-m)(x+m+1)=x(x-2004)(x+2004+1)=x(x-2004)(x+2005).以上介绍的是用换元法进行因式分解的初步知识,同学们在以后解题时要多分析题目的结构特点,灵活运用各种因式分解的方法.也可以多进行一题多解的训练,达到举一反三的目的.最后请同学们思考一下:刚才举的几道例题,还有没有其它解法?如果有的话,赶快把你的新解法写出来吧.。
14.3因式分解专题一因式分解1.下列分解因式正确的是()A.3x2- 6x =x(x-6) B.-a2+b2=(b+a)(b-a) C.4x2- y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)2 2.分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.(3)平方差公式:a 2-b 2=(a+b)(a -b),两个数的平方差,等于这两个数的和与这两个数的差的积. (4)完全平方公式:a 2±2ab+b 2=(a ±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.【温馨提示】1.分解因式的对象必须是多项式,如把25a bc 分解成abc a ⋅5就不是分解因式,因为25a bc 不是多项式.2.分解因式的结果必须是积的形式,如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式.【方法技巧】1.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此时括号内的各项都应变号,如)2(22--=+-x x x x .2.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行变化,使之符合公式的特点.参考答案:1.B 解析:A中,3x2- 6x=3x(x-2),故A错误;B中,-a2+b2=-(a-b)(a+b)=(b+a)(b-a),故B正确;C中,4x2- y2=(2x)2-(2y)2=(2x-y)(2x+y),故C错误;D中,4x2-2xy+y2的中间项不是2×2x×y,故不能因式分解,故D错误.综上所述,选B.2.3m(m-3n)2解析:3m3-18m2n+27mn2=3m(m2-6mn+9n2)=3m(m-3n)2.3.(2a-b)2解析:(2a+b)2-8ab=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.4.(x2解析:x4-4=(x2+2)(x2-2)=(x2.5.解:(1)3x2--4);(2)x4-10x2+25=(x2-5)22(x2.6.解:(1)x3-2x=x(x2-7.B 解析:∵m-n=-5,mn=6,∴m2n-mn2=mn(m-n)=6×(-5)=-30,故选B.8.2013 解析:32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.9.解:(1)答案不唯一,如:(x2-4x)+(x2+2x)=2x2-2x=2x(x-1).(2) 答案不唯一,如:x2-4x>x2+2x,合并同类项,得-6x>0,解得x<0.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。
教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。
本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。
但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。
四. 教学重难点1.重点:因式分解的方法和技巧。
2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。
五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。
六. 教学准备1.准备相关教学PPT和教学素材。
2.设计好教学问题和练习题。
3.准备好黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。
例如:已知二次函数的图像,求其解析式。
2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。
通过PPT展示提公因式法、公式法等具体的因式分解方法。
3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。
教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。
14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。
平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。
基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。
二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。
(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。
2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。
知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。
达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。
三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。
学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。
因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。
四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。
八年级上册数学因式分解公式
一、因式分解的概念。
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
二、因式分解的基本方法及公式(人教版八年级上册)
1. 提公因式法。
- 公因式:多项式各项都含有的公共的因式叫做这个多项式各项的公因式。
- 提公因式法分解因式的公式:ma + mb+mc=m(a + b + c)
- 例如:6x^2+9x = 3x(2x + 3),这里公因式是3x。
2. 平方差公式。
- 公式:a^2-b^2=(a + b)(a - b)
- 例如:9x^2-25y^2=(3x + 5y)(3x-5y),其中a = 3x,b = 5y。
3. 完全平方公式。
- 完全平方和公式:a^2+2ab + b^2=(a + b)^2
- 例如:x^2+6x + 9=(x + 3)^2,这里a=x,b = 3。
- 完全平方差公式:a^2-2ab + b^2=(a - b)^2
- 例如:x^2-8x+16=(x - 4)^2,其中a=x,b = 4。
因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
因式分解 一、 提取公因式定义:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法1、12a 2b 2c ,-8a 2b 3,+4a 3b 2的公因式为_____.2、 多项式56x 3yz+14x 2y 2z-21xy 2z 2各项的公因式是_____.3、 6a 2bc ,8abc 2,12a 2b 2c 3的公因式是_____,2a(x-y)6,4ac(y-x)3的公因式是4、多项式9m 3n 2-6m 2n+18m 各项的公因式为_____.5、 多项式3a 3b 3-3a 2b 2-9a 2b 各项的公因式是_____.6、 多项式-4a 2b 2+12a 2b 3-8a 3b 2c 的公因式是7、单项式6a 3b 与9a 2b 2c 的公因式为_____.8ab 2与-4a 3b 2的公因式为_____.8、代数式-8a 3b 2与12ab 3的公因式为_____.单项式6a 3b 与9a 2b 2c 的公因式为___ 9、8ab 2与-4a 3b 2的公因式为_____.-9x 2+3xy 2-12x 2y 的公因式是_____.10、-3x 2y+6xy 2-12xy 的公因式是_____.12x 3y-18x 2y 3的公因式是_____.11、3221216x y x y -的公因式是12、计算题,下列各式因式分解(注意,一看系数,系数去最大公约数;二看字母取指数最小的即可)(1)、269x xy + (2)2x xy - (3)、22xy x y -20.5x xy - (5)、23268x xy xy -+- (6)、5()10()a b c a b +-+(7)、224(2)2(2)a x b x -+- (8)、222(4)8(4)a x b x -+-(指数为偶数的时候调换位置结果仍然不变)(9)、22R r ππ- (10)、x 2+ax (11)、222(3)(3)x x x ---(12)、2()3()a y z b z y --- (13)、2()3()a x y b y x ---(14)、(6)(6)x b x --- (15)、(3)2(3)m a a -+-(16)、6()4()p p q q p q +-+ (17)、2()()a b c b a -+- (18)、2(2)(2)x y y x -+-。
初中数学试卷因式分解——分组分解法引例:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b) 或者am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n) 以上分解因式的方法称为分组分解法。
类型一:①分组后组内有公因式;②组与组之间有公因式例1:因式分解(1) a2-ab+ac-bc (2) 3ax+4by+4ay+3bx练习:把下列各式因式分解(1) x2-xy+2x-2y (2) x3-x2+3x-3 (3) m2+5n-mn-5m (4) 2ax-10ay+5by-bx (5) 5am-a+b-5bm (6) 6xy-10+15x-4y类型二:①分组后,各组有公因式,或者可以直接使用公式法②组与组之间有公因式或可以用公式法例2:因式分解(1) x2-y2+ax+ay (2) a2-2ab+b2-c2练习:把下列各式因式分解(1) x2y2 -4+xy2-2y (2) x2-4y2+12yz-9z2(3) 4a2+4ab+b2-1 (4) a4-b4+2a3b-2ab3(5) 9a2-b2+2b-1 (6) 1-x2+6xy-9y2例3:(1)若m2+2mn+2n2-6n+9=0,则m= ,n= 。
(2)若x2+2y2+2xy-4y+4,则x y= 。
(3)已知a2+b2=10a+8b-41,则a= ,b= 。
巩固练习1:把下列各式因式分解(1) a2-b2-4a-4b (2) 4a2-2a-b2-b (3) m2-4mn+4n2-4 (4) 4x2-4xy+4y2-16z2(5) x2-2x+1-y2(6) a2-b2-2bc-c22已知|a-2|+b2-2b+1=0,则a= ,b= .3.已知a2+b2+6a-4b+13=0,则(a+b)2的值为4.已知2a2-2ab+b2+4a+4=0, 求a2b+ab2的值。
14.3 因式分解(第1课时)
自主探究
合作交流式,其中一个因式是各项的公因式m,
另一个因式(a+b+c)是ma+mb+mc除
以m得到的商.像这种分解因式的方
法叫做提公因式法.
【例1】分解因式:
(1)8a3b2+12ab3c;
(2)4a2-8ab+4a.
【分析】
(1)、(2)两题首先确定公因式,
然后用每一项除以公因式,最后把公
因式和所得的商写成乘积的形式即
可.
公因式的确定方法
⑴系数:各项系数的最大公约数;
⑵字母:取相同字母及相同字母
的最低次数.(如1题公因式为4ab2).
【例2】分解因式:
(1)2a(b+c)-3(b+c);
(2)a(m-n)-3b(n-m).
【分析】
(1)公因式为(b+c)把(b+c)看
成一个整体.
(2)(m-n)与 (n-m)互为相反数,
只要把其中一个式子添个负号,就可
以变成相同的因式:
(m-n)= -(n-m)或 (n-m)= -
(m-n).
式法.
教师出示例题,要求学
生讨论如何找公因式,然后
再尝试独立完成,最后小组
交流,核对答案.
对于例1:教师点拨引导:
公因式的确定方法教师让2
名同学板演,等其余学生完
成后,点评、总结方法步骤.
教师强调:
第(2)题结果不要写成
4a(a-2b)这就是说1作
为项系数可以省略,但单独
成一项时,它在因式分解时
不能漏掉,可以概括为:某
项提出莫漏1.
对于例2:
教师要求学生先找到公
因式再分解因式,找2位同
学板演,其余同学下面完
成,完成后互换批改.
强调:公因式可以是单
项式也可以是多项式,是多
项式时应整体考虑直接提
出.
尝试应用1.下列从左到右变形属于因式分解的
是()
A.(y+2)(y-2)=y2-4
B.a2+2a+1=a(a+2)+1
C.b2+6b+1=(b+3)2-8
D.x2-5x-6=(x+1)(x-6)
2、多项式8a3b2+12a3bc-4a2b中,各项
的公因式是( )
A.a2b
B.4a2b
C.-4a2b2
D.-a2b
3、分解因式
(1)12xyz-9x2y2
(2) -x3y3-x2y2-xy.
(3)p(a2 + b2 )- q(b2 +a2 )
第1---2题学生独立完成.
教师巡视,并个别辅导纠
错.
第3题三学生板演,教师巡
视,关注两种情况,一、找
公因式是否正确,二、第一
项为负一般先提负号.
1、D;
2、B
3、(1)3xy(4z-3xy);
(2)-xy(x2y2+xy+1).
(3)(a2+b2)(p-q);
14.3因式分解(第2课时)。