光检测器介绍PINAPD详细讲解.
- 格式:ppt
- 大小:472.50 KB
- 文档页数:37
简述pin和apd的工作原理PIN和APD都是用于光电探测的器件,工作原理略有不同,下面将对PIN和APD的工作原理进行详细的阐述。
首先,我们先来介绍一下PIN(P型/Intrinsic/N型)结构器件的工作原理。
PIN结构是一种半导体器件,由P型半导体、Intrinsic层(无掺杂的半导体层)和N型半导体组成。
在PIN结构中,Intrinsic层的宽度较大,起到减少载流子复合的作用。
当光线射入PIN结构中时,光子能量会被传递给半导体晶格中的电子,使其激发为可导电的载流子。
当不存在外加电压的情况下,通过PIN结构的电流主要是由光生电流和擦除电流组成。
光生电流是指光射入PIN结构时,光子与半导体材料发生作用产生的电流。
而擦除电流是指由于载流子在PIN结构中的扩散而产生的电流。
当施加一个外加正向偏压时,即P端连接正极,N端连接负极,此时形成了一个光电二极管。
光电二极管在没有光照射的情况下,电流非常小,只有极小的擦除电流。
但当光照射到PIN结构中时,光子激发了Intrinsic层中的电子,使其跃迁为导带中的自由电子,同时生成空穴。
这些载流子因为外加电场的作用而被快速输送到电极上,从而产生电流。
因此,当光照射到PIN结构时,光电二极管的电流会增大。
这种通过光子激发载流子的效应就是光电效应。
光电二极管的输出电流与输入光强度之间存在着线性关系。
光电二极管的灵敏度与Intrinsic层的宽度有关,宽度越大,灵敏度越高。
在应用中,PIN结构器件主要用于光电转换和信号检测方面,如光通信、光采样等。
接下来,我们来介绍一下APD(Avalanche Photo Diode)的工作原理。
与PIN结构器件不同,APD采用了一种称为雪崩复制效应的方式来增强光电二极管的敏感度。
APD的基本结构与PIN结构类似,也是由P型半导体、Intrinsic 层和N型半导体组成。
APD的工作原理是在光电二极管中引入一个反向偏压,即P端连接负极,N端连接正极。
主要光电子器件介绍【内容摘要】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。
【关键词】光纤通信光电子器件【正文】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。
将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。
从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。
1、光有源器件1)光检测器常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。
目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。
为了得到较大的信号电流,人们希望灵敏度尽可能的高。
光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。
随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。
由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。
因此,光电检测器的噪声要求很小。
另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。
2)光放大器光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。
早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。
随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。
另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。
PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱与光功率又称饱与光功率即指最大负载。
指在一定得传输速率下,维持一定得误码率(10-10~10-12)时得光模块接收端最大可以探测到得输入光功率。
当光探测器在强光照射下会出现光电流饱与现象,当出现此现象后,探测器需要一定得时间恢复,此时接收灵敏度下降,接收到得信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱与光功率。
因此对于发射光功率大得光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度得时候,输出得光电流将趋于饱与。
随着温度得升高,APD得击穿电压V BR也随着上升,如果APD得工作电压(即高压)不变,APD得光电检测性能会变弱,灵敏度降低。
APD得倍增因子代表倍增后得光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说她就是可调得。
同时可以瞧到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生得倍增噪声会远远大于倍增效应带来得好处。
因此实际使用中,总就是把反偏电压调到略小于雪崩电压得地方。
APD倍增因子M得计算公式很多,一个常用得公式为 M=1/1-(v/vB)n式中: n 就是由P-N 结材料决定得常数; V B 为理想反向偏压; V 为反向偏压得增加值。
对于Si 材料,n =1、 5 ~ 4 ;对于Ge 材料n = 2、 5~8 。
由式中还可瞧出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料得APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
pin光电探测器原理光电探测器是一种能够将光信号转换为电信号的设备,其中pin光电探测器是最常见的一种。
它的原理是基于光电效应和pn结构的特性。
让我们来了解一下光电效应。
光电效应是指当光照射到物质表面时,光子的能量被物质中的电子吸收,使得电子从物质中解离出来,从而产生电流。
这个过程是通过光子的能量被电子吸收,使得电子获得足够的能量跳出原子轨道而实现的。
在pin光电探测器中,p区和n区之间形成了一个pn结。
当光照射到探测器的表面时,光子的能量被探测器吸收,激发了p区和n区中的电子。
在pn结的电场作用下,电子会被推向n区,而空穴会被推向p区。
这个过程导致了p区和n区之间形成了一个光生电势差。
光生电势差的大小与光子的能量有关,因此,当光子的能量足够大时,光生电势差也会相应增大。
这样,我们就可以通过测量光生电势差的大小来确定光子的能量,从而获得光信号的强度。
pin光电探测器的另一个重要特点是它的高频响应能力。
由于pn结的结电容较小,因此电子和空穴在pn结中的移动速度较快。
这使得pin光电探测器能够快速地响应光信号的变化,适用于高频信号的检测。
除了高频响应能力,pin光电探测器还具有较高的灵敏度和低的噪声水平。
这是因为pn结的电子和空穴在结区域中会产生电流,而这个电流会被引出并放大,从而提高了探测器的灵敏度。
同时,由于pn结的电流会受到一些噪声的影响,因此pin光电探测器还会采取一些措施来降低噪声水平,以提高信号的清晰度。
总结起来,pin光电探测器利用光电效应和pn结的特性,实现了光信号到电信号的转换。
它具有高频响应能力、较高的灵敏度和低的噪声水平等优点。
在各种光学应用中,pin光电探测器都扮演着重要的角色,例如光通信、光谱分析、光电子学等领域。
它的出现不仅推动了光学技术的发展,而且在人类的生活中也起到了重要的作用。
光纤小测选题:PIN和APD光电检测器的选择班级:通信**班学号:****姓名:***日期:***PIN 和APD光电检测器的选择光发射机发射的光信号经过光纤传输后,不仅幅度衰减了,而且脉冲波形也展宽了。
光接收机的作用就是检测经过传输后的微弱光信号,并放大、整形、再生成原输入信号。
它的主要器件是利用光电效应把光信号转变为电信号的光电探测器。
对光探测器的要求是灵敏度高、响应快、噪声小、成本低和可靠性高,并且它的光敏效应与光纤径匹配。
用半导体材料制成的光探测器正好满足这些要求,在实际工程中最常用的就是PIN光敏二极管和雪崩光敏二极管(APD)。
一.基本概念衡量光电检测器的重要性能指标1. 响应度(R)和量子效率(η)响应度:光生电流I P 与入射光功率P in成正比,即R=I PP in(1-1)量子效率:产生的电子数与光子数之比,即η=I p/qP in/hv(1-2)R=ηqhv =ηλ1.24(1-3)式中普朗克常数h=6.63∗10−34J.s,电子电荷q=1.6∗10−19C(1-1)式表示光探测的响应度随波长增加而增加,这是因为光子能量hv减小时可以产生与减少的能量相等的电流。
R和λ的这种线性关系不能一直保持下去,因为光子能量太小时将不能产生电子。
当光子能量变得比禁带能量E g小时,无论入射光多强,光电效应也不会发生,此时量子效率下降为零。
也就是说,光电效应必须满足条件:E g<hv<e0V(1-4)2.响应带宽(1)APD的3dB电带宽Δf=(2πτe M0)−1(1-5)式中M0为APD的的低频倍增系数,τe为等效渡越时间,与空穴和电子的碰撞电离系数比值αℎαe 有关,在αe>αh时,τe=αhαeτth式(1-5)表明带宽Δf 与倍增系数M 0的矛盾关系,也表明采用αℎ/αe ≪1 的材料制作APD ,可获得较高的本征响应带宽。
(2)PIN 的响应带宽∆f =12πR L C d (1-6)式中C d 为二极管的节点电容,R L 为二极管的负载电阻;式(1-5)表明为了提高PIN 的响应带宽,应尽量减小结电容C d 。
P I N和A P D介绍PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD 的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。