回归模型的统计检验
- 格式:ppt
- 大小:484.50 KB
- 文档页数:26
多元回归模型参数的各种检验及相关关系总结1.F检验:F检验用于判断整个回归模型是否显著,即自变量在一起解释因变量的效果是否显著。
通过计算回归模型的F统计量,然后与F分布进行比较,进行假设检验。
若F统计量显著,则拒绝原假设,即回归模型具有显著的解释效果。
2.t检验:t检验用于判断各个自变量的系数是否显著,即自变量对因变量是否有显著影响。
通过计算各个自变量的t统计量,然后与t分布进行比较,进行假设检验。
若t统计量显著,则拒绝原假设,即该自变量具有显著影响。
3.R方检验:R方是一个衡量回归模型拟合优度的指标,表示因变量的变异能够被自变量解释的比例。
R方的取值范围为0到1,越接近1表示模型对观测数据的拟合程度越好。
可以使用R方来判断模型是否拟合良好,但需要注意过高的R方可能意味着过拟合。
4.回归系数的置信区间:对回归模型的回归系数进行置信区间估计,判断回归系数是否显著。
如果回归系数的置信区间包含零,则不能拒绝原假设,即该回归系数不显著。
相反,如果回归系数的置信区间不包含零,则拒绝原假设,即该回归系数显著。
5. Durbin-Watson检验:Durbin-Watson检验用于检验回归模型自相关性的存在。
自相关性指的是误差项之间存在相关性。
Durbin-Watson检验的统计量为DW值,其取值范围为0到4,DW值接近2表示无自相关性,DW值小于2表示存在正自相关性,DW值大于2表示存在负自相关性。
各种参数检验之间存在一些相关关系1.R方与F检验:R方是回归模型拟合程度的评估指标,而F检验用于判断整个回归模型的显著性。
R方较高时,F统计量一般也较大,说明回归模型的解释效果显著。
2.回归系数与t检验:回归模型的回归系数用于表示自变量对因变量的影响程度,t检验用于判断回归系数是否显著。
当回归系数较大时,其对应的t统计量也较大,说明这个自变量对因变量有显著影响。
3.回归系数与置信区间:回归系数的置信区间反映了回归系数的不确定性。
§2.4 一元线性回归的模型检验一、经济意义检验。
二、在一元回归模型的统计检验主要包括如下几种检验1、拟合优度检验(R2检验;2、自变量显著性检验(t检验;3、残差标准差检验(SE检验。
•主要检验模型参数的符号、大小和变量之间的相关关系是否与经济理论和实际经验相符合。
一、经济意义检验i•二、统计检验•回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。
•尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。
那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。
1、拟合优度检验拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。
度量拟合优度的指标:判定系数(可决系数R2(1、总离差平方和的分解已知由一组样本观测值(X i ,Y i ,通过估计得到如下样本回归直线ii X Y 10ˆˆˆββ+=i i i i i i i y e Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=总离差平方和的分解ii X Y 10ˆˆˆββ+=ˆ(ˆY Y y i i -=i i i i i i i ye Y Y Y Y Y Y y ˆˆ(ˆ(+=-+-=-=Y 的i 个观测值与样本均值的离差由回归直线解释的部分回归直线不能解释的部分离差分解为两部分之和总离差平方和的分解公式:TSS=RSS+ESS,TSS 总离差平方和,ESS 为回归平方和,RSS 为残差平方和.((((((((0ˆˆˆ,0.0ˆˆ(ˆ(ˆˆ(2ˆˆ: 1022222222ˆˆˆˆˆˆ=+===-=-=--+=+=-+-=-+--+-=-+-=-=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ii i i i i ii i i i i i i i i i i i i i i i i i i i i i X e e Y e e e Y Y e Y Y e Y Y ESS RSS y e Y Y Y Y TSS Y Y Y YY Y Y YY Y Y Y Y Y Y Y ββ而因为证明TSS=ESS+RSSY的观测值围绕其均值的总离差(total variation可分解为两部分:一部分来自回归线(ESS,另一部分则来自随机部分(RSS。
实验实训报告课程名称:计量经济学实验开课学期:2011-2012学年第一学期开课系(部): 经济开课实验(训)室:数量经济分析实验室学生姓名:专业班级:_____________________________学号:________________________________重庆工商大学融智学院教务处制实验题目实验概述【实验(训)目的及要求】目的:掌握多元线性回归模型的估计、检验。
要求:在老师指导下完成多元线性回归模型的建立、估计、统计检验,并得到正确的分析结果。
【实验(训)原理】当多元线性回归模型在满足线性模型古典假设的前提下,最小二乘估计结果具有无偏性、有效性等性质,在此基础上进一步对估计所得的模型进行经济意义检验及统计检验。
实验内容【实验(训)方案设计】1、创建工作文件和导入数据;2、完成变量的描述性统计;3、进行多元线性回归估计;4、统计检验:可决系数分析(R2);(2)参数显著性分析(t检验);(3)方程显著性分析(F检验);5、进行变量非线性模型的线性化处理,并比较不同模型的拟合优度(因变量相同时)。
实验背景选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“TAX)作为被解释变量,以反映国家税收的增长。
选择“国内生产总值(GDP ”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表(FIN);选择“商品零售物价指数”作为物价水平的代表(PRIC),并将它们设为影响税收收入的解释变量。
建立中国税收的增长模型,并对已建立的模型进行检验。
【实验(训)过程】(实验(训)步骤、记录、数据、分析)1根据实验数据的相关信息建立Workfile ;在菜单中依次点击File\New\Workfile, 在出现的对话框"Workfile range ”中选择数据频率。
因为本例分析中国1978-2002年度的税收(Tax)与GDR财政支出(FIN)、商品零售物价指数(PRIC)之间关系,因此,在数据频率选项中选择“ Annual ”选项。
多元回归的模型检验指标多元回归是一种经济学和统计学中常用的分析方法,用于研究多个自变量对一个因变量的影响程度。
在多元回归模型中,我们需要考虑多个自变量对因变量的联合作用,以及各自变量之间的相互关系。
在进行多元回归分析时,我们需要使用一些模型检验指标来评估模型的拟合程度和统计显著性。
本文将介绍几个常用的多元回归模型检验指标,并解释其含义和应用。
1. 残差分析残差分析是多元回归模型检验中最常用的方法之一。
残差是指模型预测值与实际观测值之间的差异,通过分析残差的分布情况可以评估模型的拟合程度。
常见的残差分析方法包括绘制残差散点图、残差直方图和残差-拟合值图等。
如果残差呈现随机分布、均值接近0且方差稳定的趋势,则说明模型拟合良好。
2. 线性关系检验线性关系检验用于检验自变量与因变量之间是否存在线性关系。
常用的方法包括绘制自变量与残差的散点图,观察其是否呈现线性趋势。
另外,还可以使用F检验来检验自变量的整体显著性,即自变量对因变量的联合作用是否显著。
3. 多重共线性检验多重共线性是指自变量之间存在高度相关性,可能会影响模型的稳定性和解释力。
常用的多重共线性检验指标包括方差膨胀因子(VIF)和条件数。
VIF越大,说明自变量之间的相关性越强,可能存在多重共线性问题。
条件数越大,说明矩阵X的条件数越大,可能存在多重共线性问题。
一般来说,VIF大于10或条件数大于30可以被认为存在多重共线性。
4. 拟合优度检验拟合优度检验用于评估模型的拟合程度。
常用的拟合优度检验指标包括决定系数(R²)、调整决定系数(adjusted R²)和残差平方和(RSS)。
R²越接近1,说明模型拟合效果越好;adjusted R²考虑了自变量个数对模型拟合的影响,可以更准确地评估模型的拟合程度;RSS越小,说明模型拟合效果越好。
5. 统计显著性检验统计显著性检验用于判断模型的统计显著性。
常用的统计显著性检验指标包括t检验和F检验。
回归检验法
回归检验法是一种统计方法,用于评估回归模型的拟合程度和模型中的回归系数的显著性。
回归检验法包括以下几个方面:
1. 偏回归系数的显著性检验:通过计算回归系数的标准误差、t值和p值来评估回归系数的显著性。
较小的标准误差和较大的t值意味着回归系数更具显著性。
2. 模型的整体显著性检验:通过计算模型的F统计量和p值来评估回归模型的整体拟合程度。
较大的F值和较小的p值意味着模型的整体拟合程度更好。
3. 残差的正态性检验:通过检验模型的残差是否符合正态分布来评估模型的拟合程度。
正态分布的残差意味着模型的拟合效果更好。
4. 残差的独立性检验:通过检验模型的残差是否存在自相关性来评估模型的拟合效果。
独立的残差意味着模型的拟合效果更好。
通过以上回归检验法可以更全面地评估回归模型的拟合程度和回归系数的显著性,从而判断回归模型的有效性和可靠性。