Logistic回归分析
Logistic回归模型: Logit(p)=ln(p/(1-p))=β0+β1x1+β2x2+βnxn
Y=Logit(p) 的图形如下 (随p由0变到1,Y的值由-∞单调上升到∞)
5
Logistic回归分析
上模型称为Logistic回归模型.其中最简单的情况
0
3
0
8
31
PPT课件
20
Logistic回归
进入分析家并打开数据集 选择统计/回归/Logisti
YDependent,xQuantitative <Variables>/countFrequency 点击Model{}右侧的箭头,并选0(y=0
为发病) ok
1
Logistic回归分析
描述属性变量Y所表示的某一特征发生的可 能性大小(即概率p),也希望用一些自变量x1, x2,...来说明和预测。特别是两值问题(Y=0表示 某事件A不发生,Y=1表示发生):记
P{Y=1}=p
p的取值在0与1之间变化,所以简单地将 概率p表示为自变量x1, x2,....的线性函数 是不合适的。
4.6978=570.649-565.951 其对应的P值小,建模效果显著
12
结果分析
参数估计值
• (Analysis of Maxamum Likelihood Estimates)
回归方程:
• Logit(p)=-0.7566+0.4373*sex • 由检验的显著性概率值(分别为0.001和0.0312)可知
PPT课件
23
结果
结果:
1.Ln(p/(1-p))=1.9924-2.7462x3 有巩固治疗x3=1,Ln(p/(1-p))=-0.7538 p/(1-p)=0.471,p=0.471/1.471=0.32 有巩固治疗一年内死亡的概率是0.32 2.无巩固治疗x3=0,Ln(p/(1-p))=1.9924 p/(1-p)=7.33,p=7.33/8.33=0.88 无巩固治疗一年内死亡的概率是0.88