平面曲线的曲率
- 格式:ppt
- 大小:653.50 KB
- 文档页数:20
平面曲线的曲率第一部分:教案(P1-6)第二部分:说课稿(P7-11)2009年12月《平面曲线的曲率》教案课题:平面曲线的曲率课时:2课时(90分钟)教学目标:认知目标:1、理解曲率的概念和曲率公式的实际应用;2、了解曲率圆和曲率半径的概念;3、掌握曲率计算公式的推导过程及公式的实际应用,真正体会微积分和导数在数学中的重要地位。
能力目标:激发学生的数学学习兴趣,加强数学建模的能力,掌握归纳总结的数学思想方法,培养学生联系实际学习的意识,增进数学应用的眼光,提高学生的主观能动性情感目标:培养学生勇于探索、大胆应用的数学精神,培养团结协作的意识。
教学重点:曲率的概念,曲率计算公式的实际应用。
教学难点:利用曲率计算公式解决实际应用问题。
教学方法:引导探究法(Enlightment)、分层次教学法(Delamination)、任务驱动法(Assignment)。
教学工具:木杆、多媒体课件教学。
教学过程:一、引入:前面我们已经学习了导数的应用,例如函数极值、最值的求解,函数单调性的判断及函数图像的描绘等,我们体会了导数的重要性,曾有人说微积分和导数是最伟大的人类心智成就之一,足以可见它们在人类生产生活中的应用之广泛,今天我们要继续学习导数的另一个应用——“平面曲线的曲率”,这个内容虽然是个选修内容,可是对于我们工程机械专业的学生来说是个不得不学的内容,所以我们接下来就来探讨有关平面曲线的曲率的问题。
二、新课讲解:(一)引入课题:(5分钟)操作实验,并布置任务。
感性认识“直”——“弯”——“最弯之处”:取一根笔直的木杆,当它放置于桌面上时,它很明显时直的,没有弯曲。
当它的两端各受另一个向上的外力时,它马上会开始弯曲,在这个过程中,有的地方弯曲程度大,有的地方弯曲程度小,随着力度的增大,竹片会断裂,很明显我们可以得出结论:断裂处就是弯曲得最厉害的地方。
当然弯曲的时木杆,断裂了也没什么关系,但若是因荷载作用而弯曲变形的船体结构中的钢梁,我们是不能让它们断裂的,所以我们必须找到那个最容易断裂的地方,然后给它加固,或者我们要采取一些什么样的措施来防止因为弯曲而容易断裂的铁路铁轨的问题呢?在数学领域里,我们用曲率来描述曲线的弯曲程度,因此今天我们就来探讨“平面曲线的曲率”的问题。
第6节 曲线的曲率6.1弧长微分在曲线()y f x =上取定一点000(,())P x f x 为起点,从000(,())P x f x 到(,())x f x 的曲线段长记为()s x ,并规定当0x x <时()0s x <。
()s x 是单调增加的函数。
下面求弧长微分ds 。
()()()()s x s x x s x ≤∆≤∆≤∆≤∆∆≤∆≤∆ds =,()ds s x '== 如果()()xt y t ϕψ=⎧⎨=⎩则,()ds s t '==如果()ρρθ=则,()ds s θ'==以后经常要用到以上弧长微分公式。
图6.1y +离 散数 学6.2曲线的曲率这节讨论曲线的曲率,也就是曲线的弯曲程度。
设曲线()y f x =在()00,()x f x 的切线0L 与x 轴正向的夹角为0θ,在()00,()x x f x x +∆+∆的切线x L ∆与x 轴正向的夹角为x θ∆。
经过x ∆,切线的夹角变化了0x θθθ∆∆=-设()00,()x f x 和()00,()x x f x x +∆+∆之间曲线的长为s ∆。
容易想见,()00,()x f x 和()00,()x x f x x +∆+∆之间曲线的曲率(弯曲程度)与θ∆成正比,与s ∆成反比,平均曲率()k x sθ∆∆=∆ 让0x ∆→求极限,就得到曲线()y f x =在()00,()x f x 的曲率(弯曲程度)000()lim ()limx x d k x k x s dsθθ∆→∆→∆=∆==∆ 下面我们求出d dsθ从而得到求曲率的计算公式。
用x 作参数 ()()s s x x θθ=⎧⎨=⎩()()2222tan ()1()cos 1tan ()1()()()1()f x d f x dx d f x dx f x d f x dxd f x dx f x θθθθθθθ'=''=''+='''+=''='+第1章集 合322()1()d f x d ds dxdxds f x θθ''=='⎡⎤+⎣⎦003220()()1()f x k x f x ''='⎡⎤+⎣⎦例子:求半径为r 的圆上一点的曲率。
平面解析几何基础知识曲线的曲率与半径在平面解析几何中,曲线的曲率和曲线的半径是非常重要的基础知识。
曲线的曲率描述了曲线在某一点处弯曲的程度,而曲线的半径则是曲线在该点处的弯曲半径。
一、曲率的定义和计算方法曲线在某一点处的曲率是该点处曲线切线的变化率。
设曲线方程为y=f(x),则曲线在点(x0,y0)处的曲率K可以通过以下公式计算:K=|y''|/(1+y'²)^(3/2),其中y'和y''分别表示曲线方程的一阶和二阶导数。
二、曲率的几何意义曲线的曲率可以反映曲线的弯曲程度。
当曲率K为正时,曲线向外凸出,表示曲线在该点处向外弯曲;当曲率K为负时,曲线向内凹陷,表示曲线在该点处向内弯曲;当曲率K为零时,曲线是直线。
曲率的绝对值越大,曲线在该点处的弯曲程度越大。
三、曲线的半径和曲率的关系曲线在某一点处的曲率K与曲线的半径R满足如下关系:K=1/R。
即曲线的曲率等于曲线的半径的倒数。
这意味着曲线的半径越大,曲线的曲率越小,曲线的弯曲程度越小;曲线的半径越小,曲线的曲率越大,曲线的弯曲程度越大。
四、曲线的曲率与切线方向的关系曲线在某一点处的曲率K与曲线在该点处的切线方向有密切关系。
当曲率K为正时,曲线的切线方向是逆时针旋转的;当曲率K为负时,曲线的切线方向是顺时针旋转的。
五、曲线的曲率和半径的应用曲线的曲率和半径在计算机图形学、物理学、工程学等领域有广泛的应用。
在计算机图形学中,曲线的曲率和半径常用于绘制平滑的曲线和曲面,以及进行形状分析;在物理学中,曲线的曲率和半径用于描述粒子在运动过程中的轨迹;在工程学中,曲线的曲率和半径用于设计道路的弯曲程度和转弯半径。
综上所述,曲线的曲率和曲线的半径是平面解析几何中的基础知识。
它们描述了曲线在某一点处的弯曲程度和弯曲半径,对于理解和分析曲线的性质和特点非常重要。
这些知识在实际应用中有广泛的用途,能够帮助我们解决各种问题,并且在科学研究和工程设计中起着重要的作用。