ANSYS中单元类型的选择 (1)
- 格式:doc
- 大小:53.00 KB
- 文档页数:9
单元类型的选择单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
ansys单元类型种类统计单元名称种类单元号LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189SOLID (共30种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227COMBIN (共05种)7,14,37,39,40INFIN (共04种)9,47,110,111CONTAC (共05种)12,26,48,49,52PIPE (共06种)16,17,18,20,59,60MASS (共03种)21,71,166MATRIX (共02种)27,50SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142SOURC (共01种)36HYPER (共06种)56,58,74,84,86,158VISCO (共05种)88,89,106,107,108CIRCU (共03种)94,124,125TRANS (共02种)109,126INTER (共05种)115,192,193,194,195HF (共03种)118,119,120ROM (共01种)144SURF (共04种)151,152,153,154COMBI (共01种)165TARGE (共02种)169,170CONTA (共06种)171,172,173,174,175,178PRETS (共01种)179MPC (共01种)184MESH (共01种)20ANSYS分析结构静力学中常用的单元类型一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
ANSYS单元类型选择方法最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流!下面是有关ANSYS分析中的单元选择方法:一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。
Ansys单元类型设置一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad8node 82 Quad 8node 183前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。
Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。
ansys单元类型种类统计单元名称种类单元号LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189SOLID (共30种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227COMBIN (共05种)7,14,37,39,40INFIN (共04种)9,47,110,111CONTAC (共05种)12,26,48,49,52PIPE (共06种)16,17,18,20,59,60MASS (共03种)21,71,166MATRIX (共02种)27,50SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142SOURC (共01种)36HYPER (共06种)56,58,74,84,86,158VISCO (共05种)88,89,106,107,108CIRCU (共03种)94,124,125TRANS (共02种)109,126INTER (共05种)115,192,193,194,195HF (共03种)118,119,120ROM (共01种)144SURF (共04种)151,152,153,154COMBI (共01种)165TARGE (共02种)169,170CONTA (共06种)171,172,173,174,175,178PRETS (共01种)179MPC (共01种)184MESH (共01种)20ANSYS分析结构静力学中常用的单元类型一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
ansys 低阶四面体单元类型ANSYS软件中,常用的低阶四面体单元类型有以下几种:Tet4、Tet10和Tetra。
1. Tet4:Tet4是最基本的四面体单元,它由四个节点和四个面构成。
每个节点有三个自由度,用于表示节点的位移,即x、y和z方向上的变形。
Tet4单元适用于粗糙的模型,如初步设计分析、荷载预测和加速度反应计算等。
2. Tet10:Tet10是Tet4的改进版本,它由十个节点和四个面构成。
相较于Tet4,Tet10单元具有更高的精度和更好的准确性。
它在应力和位移场的计算精度上具有更高的要求,适用于解决较为精细和复杂的问题,如结构的静力、动力和热力学等分析。
3. Tetra:Tetra是ANSYS中的一种高阶四面体单元,也称为“Prism”单元。
它由六个节点和四个面构成。
Tetra单元具有更高的精度和灵活性,适用于高要求的数值仿真,如表面变形、应力集中和材料失效等分析。
低阶四面体单元类型在ANSYS中具有以下特点和优势:1.简单易用:低阶四面体单元类型仅由少量的节点和面组成,易于建模和计算。
在建模过程中,可以使用自动网格划分工具来快速生成四面体单元网格,并进行后续的模拟和分析。
2.计算效率高:相较于高阶单元,低阶四面体单元具有更高的计算效率。
由于单元自由度较少,计算时间较短,适用于大规模模型和大型仿真项目。
3.适用范围广:低阶四面体单元适用于各种分析场景,例如静力学、动力学、热力学等。
由于其在节点和面的连接方面具有一定的自由度,可以灵活地应对各种复杂的边界条件和载荷情况。
4.数值精度可控:低阶四面体单元的数值精度可以通过增加单元数量和改进网格划分方法来提高。
例如,通过使用更多的Tet10单元来代替Tet4单元,可以提高数值解的精度和准确性。
总而言之,ANSYS软件中的低阶四面体单元类型具有简单易用、计算效率高、适用范围广和数值精度可控等优势。
在工程仿真和分析中,根据具体的问题和要求,可以选择合适的低阶四面体单元类型进行模拟和计算。
ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
LINK1可承受单轴拉压的单元,不能承受弯矩作用PLANE22维6节点三角形实体结构单元,可用作平面单元(平面应力或平面应变),也可以用作轴对称单元Beam3可承受拉、压、弯作用的单轴单元,每个节点有三个自由度,即沿x,y 方向的线位移及绕Z轴的角位移Beam4承受拉、压、弯、扭的单轴受力单元,每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移SOLID5三维耦合场体单元,8个节点,每个节点最多有6个自由度LINK8三维杆(或桁架)单元,用来模拟:桁架、缆索、连杆、弹簧等等,是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动PLANE13 2 维耦合场实体单元,有 4 个节点,每个节点最多有 4 个自由度PLANE25 4 节点轴对称谐波结构单元,用于承受非轴对称载荷2 维轴对称结构的建模LINK32二维热传导杆单元,应用在二维(板或轴对称)稳态或瞬态热分析PLANE35 2 维 6 节点三角形热实体单元,用作平面单元或轴对称单元PLANE42 2 维实体结构单元,作平面单元(平面应力或平面应变),也可以用作轴对称单元。
本单元有 4 个节点,每个节点有 2 个自由度,分别为 x 和y 方向的平移Shell43 4 节点塑性大应变单元,适合模拟线性、弯曲及适当厚度的壳体结构。
单元中每个节点具有六个自由度:沿x、y和z 方向的平动自由度以及绕x、y和z 轴的转动自由度PLANE53 2 维 8 节点磁实体单元,用于 2 维 (平面和轴对称) 磁场问题的建模PLANE55 2 维 4 节点热实体单元,作为平面单元或轴对称环单元,用于 2 维热传导分析。
本单元有 4 个节点,每个节点只有一个自由度 – 温度Shell63弹性壳单元,具有弯曲能力和又具有膜力,可以承受平面内荷载和法向荷载。
本单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动SOLID64 3-D 各向异性结构实体单元,用于各向异性实体结构的3D建模。
ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
通常情况下,shell63单元就够用了。
3.实体单元的选择实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。
常用的实体单元类型有solid45, solid92,solid185,solid187这几种。
其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。
Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。
实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。
新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。
六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。
前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。
选取的基本原则是优先选用编号高的单元。
比如第一类中,应该优先选用solid185。
第二类里面应该优先选用solid187。
ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。
对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选solid185。
土木计算过程中常用的单元和材料类型!一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。
link10用来模拟拉索,注意要加初应变,一根索可多分单元。
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab读入smisc数据然后用plls命令。
注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。
该单元需要手工在实常数中输入Iyy和Izz,注意方向。
beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。
beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。
缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。
8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。
可见188单元已经很完善,建议使用。
beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。
(3)shell(板壳)系列shell41一般用来模拟膜。
shell63可针对一般的板壳,注意仅限弹性分析。
它的塑性版本是shell43。
加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁版结构时常要把板中面望上偏置),可以分层,等等。
4)solid(体)系列土木中常用的就solid45、46、65、95等。
45就不用多说了,95是它的带中结点版本。
solid46可以容忍单元的长厚比达到20比1,可以用来模拟钢板碳纤维板钢管等。
solid65是专门的混凝土单元,可以考虑开裂,这个讨论得很多了单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42/ Quad 4node 183/Quad 8node 82 /Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 /2Dplastic 23/ 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。
每个自由度的质量和惯性矩分别定义。
Link1可用于各种工程应用中。
根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。
这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。
X,y,方向。
铰接,没有弯矩。
Link8可用于不同工程中的杆。
可用作模拟构架,下垂电缆,连杆,弹簧等。
3维杆元素是单轴拉压元素。
每个点有3个自由度。
X,y,z方向。
作为铰接结构,没有弯矩。
具有塑性,徐变,膨胀,应力强化和大变形的特性。
Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。
对于单向轴拉,如果元素变成受压,则硬度就消失了。
此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。
当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。
该元素是shell41的线形式,keyopt(1)=2,‟cloth‟选项。
如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59)代替。
当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。
但是由于最终局于一点的结果松弛条件也是有可能的。
在这种情况下,要用其他的元素或在link10中使用…显示动力‟技术。
Link10每个节点有3个自由度,x,y,z方向。
在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。
具有应力强化和大变形能力。
Link11用于模拟水压圆筒以及其他经受大旋转的结构。
此元素为单轴拉压元素,每个节点有3个自由度。
X,y,z方向。
没有弯扭荷载。
Link180 可用于不同的工程中。
可用来模拟构架,连杆,弹簧,等。
此3维杆元素是单轴拉压元素,每个节点有3个自由度。
X,y,z方向。
作为胶接结构,不考虑弯矩。
具有塑性,徐变,旋转,大变形,大应变能力。
link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。