动点与相似综合题
- 格式:doc
- 大小:150.00 KB
- 文档页数:2
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
相似三角形与动点问题1、将一副三角尺如图拼接:含30°角的三角尺(4ABC)的长直角边与含45°角的三角尺(A ACD)的斜边恰好重合.已知AB=2 V3 , P是AC上的一个动点.(1)当点P运动到N ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时N PDA的度数;(3)当点P运动到什么位置时,以D, P, B, Q为顶点的平行四边形的顶点Q恰好在边BC上求出此时DDPBQ 的面积.2、(2011浙江省舟山)已知直线y = kx + 3 (k V0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t 秒.(1)当k = -1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P 到达点A时两点同时停止运动(如图1).① 直接写出t =1秒时C、Q两点的坐标;②若以Q、C、A为顶点的三角形与4AOB相似,求t的值.BDC1O 1 P A x(第24题图1)3、(2011江苏扬州,)如图,在Rt^ABC中,NBAC=90°, AB<AC, M是BC边的中点,MN^BC交AC于点N, 动点P从点B出发沿射线BA以每秒,/3厘米的速度运动。
同时,动点Q从点N出发沿射线NC运动,且始终保持MQLMP。
设运动时间为t秒(t>0)(1) APBM与4QNM相似吗以图1为例说明理由;(2)若NABC=60°, AB=4\;3厘米。
①求动点Q的运动速度;② 设Rt^APQ的面积为S (平方厘米),求S与t的函数关系式;(3)探求BP2、PQ2、CQ2三者之间的数量关系,以图1为例说明理由。
4、(2011四川重庆)矩形ABCD中,AB=6, BC=2\E 点O是AB的中点,点P在AB的延长线上,且BP =3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速动动,到达A点后,立即以原速度沿AO 返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速动动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧,设动动的时间为t秒(t20).(1)当等边4EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边4EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使4AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.5、(2011福建泉州)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3, AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB—BO—OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求4APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.6、(2010浙江省温州市)(本题14分)如图,在RtAABC中,NACB=90°,AC=3, BC=4,过点B作射线BBl 〃AC.动点D从点A出发沿射线4©方向以每秒(第26题)5个单位的速度运动,同时动点E从点C出发沿射线4©方向以每秒3个单位的速度运动.过点D作DHLAB于H,过点E作EF上AC交射线881于1^ G是EF中点,连结DG.设点D运动的时间为t秒.⑴当t为何值时,AD=AB,并求出此时DE的长度;⑵当4DEG与4ACB相似时,求t的值;⑶以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A,C’.①当t> 3时,连结C,C,设四边形ACC,A,的面积为S,求S关于t的函数关系式;②当线段A,C,与射线BB,有公共点时,求t的取值范围(写出答案即可).A C DE (第24 W7 (2010浙江台州市)如图,Rt^ABC中,N C=90°, BC=6, AC=8.点P, Q都是斜边AB上的动点,点P 从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ^AB于Q,交AC于点H.当点E到达顶点A时,P, Q同时停止运动.设BP的长为x, △HDE的面积为y.(1)求证:△DHQ S^ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,4HDE为等腰三角形8、(2010湖南长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA = 8<2cm,OC = 8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒%2 cm 的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示AORQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当4OPQ与4PAB和4QPB相似时,求t的值9、(2010福建福州)如图,在9BC中,N C=45°, BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:AD=B C;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与4ABC重叠部分的面积为S,求S与t的函数关系式.10、(2010江苏淮安)如题28(a)图,在平面直角坐标系中,点A坐标为(12, 0),点B坐标为(6, 8),点C为OB的中点,点D从点O出发,沿4OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C坐标是(—,—),当点D运动秒时所在位置的坐标是(一,—);(2)设点D运动的时间为t秒,试用含t的代数式表示4OCD的面积S,并指出t为何值时,S最大;(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D, A, E为顶点的三角形何时与4OCD相似(只考虑以点A. O为对应顶点的情况):题28(a)图题28(b)图。
一.解答题(共11小题)1.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC 出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P 到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2.已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为2cm/s,当QC⊥DF时暂停旋转;运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.设运动时间为t(s),中间的暂停不计时,解答下列问题(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时s;(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S 与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.3.在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P 从点B出发沿射线BA以每秒3厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ⊥MP.设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?以图1为例说明理由;(2)若∠ABC=60°,AB=43厘米.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;(3)探求BP2、PQ2、CQ2三者之间的数量关系,以图1为例说明理由.4.已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=633个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒.(1)试求出在平移过程中,点F落在△ABC的边上时的t值;(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;(3)当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到△ACK,则是否存在点H使得△BHK的面积为43?若存在,试求出CH的值;若不存在,请说明理由.5.如图1,在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,23),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.(1)求∠DCB的度数;(2)当点F的坐标为(-4,0)时,求点G的坐标;(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的交点为H.①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;②若△EHG的面积为33,请直接写出点F的坐标.6.如图,在Rt△ACB中,∠ACB=90°,AC=3,BC=6,D为BC上一点,CD=2,射线DG,BC交AB于点G.点P从点A出发以每秒5个单位长度的速度沿AB方向运动,点Q从点D出发以每秒2个单位长度的速度沿射线DG运动,P、Q两点同时出发,当点P到达点B时停止运动,点Q也随之停止,过点P 作PE⊥AC于点E,PF⊥BC于点F,得到矩形PECF,点M为点D关于点Q的对称点,以QM为直角边,在射线DG的右侧作Rt△QMN,使QN=2QM.设运动时间为t(单位:秒).(1)当点N恰好落在PF上时,求t的值.(2)当△QMN和矩形PECF有重叠部分时,直接写出重叠部分图形面积S与t的函数关系式以及自变量t的取值范围.(3)连接PN、ND、PD,是否存在这样的t值,使△PND为直角三角形?若存在,求出相应的t值若不存在,请说明理由.7.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求DPPQ的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)8.如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F 的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.9.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式:(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成2:1的两部分?若存在,求出相应的t值;若不存在,说明理由.10.如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以23cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l 交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.11.如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.。
相似三角形综合大题(带速度的动点问题)2一.解答题(共30小题)1.(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF 的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.2.(2013•青岛)已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式:(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成:1的两部分?若存在,求出相应的t值;若不存在,说明理由.3.(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.4.(2013•重庆)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.5.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、BC、AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿A→F→D的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB 于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)(1)当点P运动到点F时,CQ=cm;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;(3)当点P在线段FD上运动时,求y与x之间的函数关系式.6.(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.7.(2013•涪陵区校级模拟)如图,在Rt△ABC中,AB=AC=.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.8.(2013•南通二模)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.9.(2013•重庆模拟)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B 运动,点E运动到点B时停止,点F也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC 在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S.(1)当点E由P向A运动过程中,请求出点H恰好落在AC边上时,t的值;(2)当0<t≤2时,求S与t的函数关系式;(3)设AC的中点为N,是否存在这样的t,使△NEF为等腰三角形?若存在,直接写出t的值;若不存在,说明理由.10.(2013•渝中区校级一模)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,矩形DEFG的顶点G与△ABC的顶点C重合,边GD、GF分别与AC,BC重合.GD=12,GF=16,矩形DEFG沿射线CB的方向以每秒4个单位长的速度匀速运动,点Q从点B出发沿BA方向以每秒5个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点H,矩形DEFG、点Q同时出发,当点Q到达点A时停止运动,矩形DEFG也随之停止运动.设矩形DEFG、点Q运动的时间是t秒(t>0).(1)求线段DF的长;(2)求运动过程中,矩形DEFG与Rt△ABC重叠部分的面积s与t的函数关系式(写出自变量的取值范围);(3)射线QK能否把矩形DEFG分成面积相等的两部分?若能,求出t值;若不能,说明理由;(4)连接DH,当DH∥AB时,请直接写出t值.11.(2013•重庆模拟)如图1,在长为44,宽为12的矩形PQRS中,将一张直角三角形纸片ABC和一张正方形纸片DEFG如图放置,其中边AB、DE在PQ上,边EF在QR上,边BC、DG在同一直线上,且Rt△ABC两直角边BC=6,AB=8,正方形DEFG的边长为4.从初始时刻开始,三角形纸片ABC,沿AP方向以每秒1个单位长度的速度向左平移;同时正方形纸片DEFG,沿QR方向以每秒2个单位长度的速度向上平移,当边GF落在SR上时,纸片DEFG立即沿RS方向以原速度向左平移,直至G点与S点重合时,两张纸片同时停止移动.设平移时间为x秒.(1)请填空:当x=2时,CD=,DQ=,此时CD+DQ CQ(请填“<”、“=”、“>”);(2)如图2,当纸片DEFG沿QR方向平移时,连接CD、DQ和CQ,求平移过程中△CDQ的面积S与x的函数关系式,并写出自变量x的取值范围(这里规定线段的面积为零);(3)如图3,当纸片DEFG沿RS方向平移时,是否存在这样的时刻x,使以A、C、D为顶点的三角形是等腰三角形?若存在,求出对应x的值;若不存在,请说明理由.12.(2013•镇赉县校级一模)如图①,在平面直角坐标系中,点A、B的坐标分别为(20,0)、(0,15),△CDE≌△AOB,且△CDE的顶点D与点B重合,DE边在AB上,△CDE以每秒5个单位长度的速度匀速向下平移.当点C落在AB边上时停止移动.设平移的时间为t(秒),△CDE与△AOB重叠部分图形的面积为s(平方单位).(1)求证:CE∥y轴;(2)点E落在x轴上时,求t的值;(3)当点D在线段BO上时,求s与t之间的函数关系式;(4)如图②,设CD、CE与AB的交点分别为M、N,以MN为边,在AB的下方作正方形MNPQ,求正方形MNPQ 的边与坐标轴有四个公共点时t的取值范围.13.(2013•如皋市模拟)如图,矩形ABCD中,AB=10cm,BC=6cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1cm/s,运动时间为t s.(1)设点Q的运动速度为cm/s.①当△DPQ的面积最小时,求t的值;②当△DAP∽△QBP相似时,求t的值.(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.14.(2013•平阳县二模)在直角坐标系中,O为坐标原点,点A的坐标为(4,3),点B从点O出发以每秒一个单位的速度向点A运动,当点B到达A点时运动停止.过点B作BC⊥x轴,垂足为C,以BC为边在右侧作正方形BCDE.连接OE交BC于点F,连接AE并延长交x轴的正半轴于点G,连接FG.设点B的运动时间为t秒(t>0).(1)直接写出正方形BCDE的边长:(用含t的代数式表示);(2)用含t的代数式表示△OAG的面积S;(3)当△OBE∽△OEA时(点E与点A对应,点O与点O对应),t的值是多少?,(4)若M是点E关于直线FG的对称点,是否存在t的值,使得四边形EFMG是平行四边形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.15.(2013•长春模拟)如图①,在直角△ABC中,∠C=90°,AC=8cm,BC=4cm.动点P在线段BC上以1cm/s的速度从点B运动到点C.过点P作PE⊥BC与AB交于点E,以PE为对称轴将PE右侧的图形翻折得到△B′PE,设点P的运动时间为x(s).(1)求点B′落在边AC上时x的值.(2)当x>0时,设△B′PE和直角△ABC重叠部分图形面积为y(cm2),求y与x之间的函数关系式.(3)如图②,点P运动的同时另有一动点D在线段AC上以2cm/s的速度从点C运动到点A.Q为CD的中点,以DQ 为斜边在线段AC右侧作等腰直角△DQM.①求当(2)中△B′PE和直角△ABC重叠部分图形面积是△DQM的面积4倍时x的取值范围.②当△DQM 的顶点落在△B′PE的边上时,直接写出所有符合条件的x值.16.(2013•长春一模)如图,在梯形ABCD中,AB∥CD,∠A=90°,AB=AD=10,CD=5,动点P从点A出发,沿折线AD﹣DC以每秒4个单位的速度向点C运动;点Q从点B出发,沿线段BC以每秒个单位的速度向点C运动,P,Q两点同时出发,当其中一点到达终点时,另一点也停止运动,过点P作PM∥BC交AB于M,过点Q作QN⊥AB 交AB于N,以线段QN为一边在QN的左侧作正方形QEFN,设运动时间为t(s),线段PM扫过平面部分与正方形QEFN重叠部分的面积为S.(1)求两点M、F相遇时t的值.(2)当点P运动到点D时,线段PM是否过点E,请说明理由.(3)当点M运动到F,N之间时,求S与t的函数关系式.(4)请直接写出t值,使线段PM将正方形QEFN分割的两部分能拼成一个梯形.17.(2013•惠山区校级模拟)已知矩形OABC的顶点O(0,0)、A(4,0)、B(4,3).动点P从O出发,以每秒1个单位的速度,沿射线OB方向运动.设运动时间为t秒.(1)求P点的坐标(用含t的代数式表示);(2)如图,以P为一顶点的正方形PQMN的边长为2,且边PQ⊥y轴.设正方形PQMN与矩形OABC的公共部分面积为S,当正方形PQMN与矩形OABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线MQ、MN分别交矩形OABC的边BC、AB于D、E,问:是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.18.(2012•漳州)如图,在▱OABC中,点A在x轴上,∠AOC=60°,0C=4cm.OA=8cm.动点P从点O出发,以1cm/s的速度沿线段OA→AB运动;动点Q同时从点O出发,以acm/s的速度沿线段OC→CB运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(,),对角线OB的长度是cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB 相似,求a与t的函数关系式,并直接写出t的取值范围.19.(2012•晋江市质检)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)填空:CQ=,AQ=(用含t的式子表示);(2)当t为何值时,点P在以AQ为直径的⊙M上?(3)当P、Q、F三点在同一条直线上时,如图(3),求t的值.20.(2012•镇江二模)如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B 两点的勾股点.(1)如图1,矩形ABCD中,AB=3,BC=1,请在边AB上作出C,D两点的所有勾股点;(要求:尺规作图,保留作图痕迹,不要求写作法)(2)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1cm/s 的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.①当t=4、t=5时,直接写出点H的个数.②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).21.(2012•绍兴模拟)如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的函数关系式;(2)t为何值时,四边形PQBA是梯形?(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由.22.(2012•海州区校级模拟)如图,以等边△OAB的边OB所在直线为x轴,点O为坐标原点,使点A在第一象限建立平面直角坐标系,其中△OAB边长为4个单位,点P从O点出发沿折线OAB向B点以2个单位/秒的速度向终点B点运动,点Q从B点出发以1个单位/秒的速度向终点O点运动,两个点同时出发,运动时间为t(秒).(1)请用t表示点P的坐标和点Q的坐标,其中t的取值范围是;(2)当t=时,PQ⊥OA;当t=时,PQ⊥AB;当t=时,PQ⊥OB;(3)△OPQ面积为S,求S关于t的函数关系式并指出S的最大值;(4)若直线PQ将△OAB分成面积比为3:5两部分?求此时直线PQ的解析式;若不能,请说明理由.23.(2012•长春模拟)如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE=cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF 向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt△ABC平移的时间为x (s).(1)求边AC的长;(2)求y 与x 的函数关系式;(3)当Rt△ABC移动至重叠部分的面积为cm2时,将Rt△ABC沿边AB向上翻折,得到Rt△ABC′,请求出Rt△ABC′与矩形DEFG重叠部分的周长.(4)点P从点D出发,沿矩形DEFG的边DE、EF、FG运动到点G停止.其中点P在DE边上的速度为,在EF边上的速度为1cm/s,在FG边上的速度为.若点P与△ABC同时运动,请直接写出点P落在△ABC内部(不含边)时运动时间x的取值范围.24.(2012春•泰兴市校级期末)如图,在矩形ABCD中,AB=6,BC=8,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.(1)求PE、AE的长(用x的代数式表示)(2)当△PAQ∽△BCE时,求x的值;(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.25.(2012秋•北碚区期末)如图,△ABC中,AC=BC=,∠C=90°,D是AB中点.动点E从点D出发,以每秒1个单位长度的速度沿D至A匀速运动,到点A时停止;另一动点F也从点D出发,以每秒1个单位长度的速度沿D至B匀速运动,点E停止时,点F也随即停止,以EF为边作正方形EFGH,使正方形EFGH和点C在直线AB的同侧;记点E的运动时间为t(秒),对应的正方形EFGH与△ABC重叠部分的面积为S.(1)求正方形EFGH的边GH经过点C时的t值;(2)请直接写出S与t的函数关系式,并写出对应的自变量的取值范围;(3)在点E的运动过程中,是否存在这样的t值,使得△AFH为等腰三角形?若存在,求出对应的t值;若不存在,请说明理由.26.(2012春•九龙坡区校级期中)如图,ABCD是一张矩形纸片,AB=20cm,BC=16cm,在AD边上取一点H,将纸片沿BH翻折,使点A恰好落在DC边上的点E处,过点E作EF∥AD交HB于点F.(1)求EF的长.(2)若点M自点H沿HE方向以1cm/s的速度向E点运动(不与H,E重合),过点M作MN∥EF交HB于点N,如图2,将△HMN沿MN对折,点H的对应点为H1,若△H1MN与四边形MNFE重叠部分的面积为S,点M运动的时间为t秒,问当t为何值时,S有最大值,最大值是多少.(3)当(2)问,点M自点H沿HE方向以1cm/s的速度向E点运动的同时点Q从点E出发,以2cm/s的速度运动,当点Q到达F点时M,Q停止运动,连接MF,是否存在某一时刻t,使点Q在线段MF的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.27.(2012秋•惠安县校级期中)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标为(6,0),(6,8).动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动,其中,点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,已知动点运动了t秒.(1)求直线AC的解析式.(2)用含t的代数式表示P的坐标(直接写出答案)(3)是否存在点P使得?若存在,请求出此时点P的坐标;若不存在,请说明理由;(4)是否存在t的值,使以P、A、M为顶点的三角形与△AOC相似?若存在,请求t的值;若不存在,请说明理由.28.(2011•鹿城区校级模拟)如图,在直角坐标系中,点A(0,4),B(﹣3,4),C(﹣6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.(1)当t=1时,求线段DP的长;(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.29.(2009•荆州二模)如图①,在Rt△ABC中,∠A=90°,AB=AC,BC=,另有一个等腰梯形DEFG(GF‖DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点,P点为AG上的一动点.(1)填空:等腰梯形DEFG的面积为(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图②).探究1:设在运动过程中△ABC与等腰梯形DEF′G′重叠部分的面积为y,直接写出y与x的函数关系式和自变量x的取值范围;探究2:在运动过程中,四边形BDG′G能否是菱形?若能,设过动点P且平分此菱形面积的直线交GF于去,当时,求P点的位置;若不能,请说明理由.30.如图,在平面直角坐标系xOy中,等腰△OAB的顶点A在第一象限,底边OB在x轴的正半轴上,且AO=AB=10cm,OB=12cm.动点C从点A出发,沿AO边向O点运动(不与O点重合),速度为1cm/s,运动时间为ts.过点C作CD∥OB交AB于点D.以CD为边,在点A的异侧作正方形CDEF.(1)若正方形CDEF与△OAB重叠部分的面积为S,求S关于t的函数关系式,并写出自变量t的取值范围;(2)连接OF,当t为何值时,△OCF为等腰三角形?相似三角形综合大题(带速度的动点问题)2参考答案与试题解析一.解答题(共30小题)1.(2013•苏州)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t= 2.5s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.则有,即则有,即.14+2FM=t=;∵2.(2013•青岛)已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式:(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成:1的两部分?若存在,求出相应的t值;若不存在,说明理由.分成=,t=,t=∴,∴,BN=MN=(y==(y=t此时t=×t=的两部分,∴,即或t=t=分成3.(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.OA=t∴OA=t∴OB=2∴t=﹣t=S=CE=(t t+4 S=CE=(t t4.(2013•重庆)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t 的取值范围.t==10==t=t=2×t=;tt=;t×t﹣t=.t=,或×=8,∴,即.=tS=•t==IFN==,NF INF=××=NF××(t(t+;时,如答图(﹣t+t+;当===,解得:x=(IK=4x=(S=FM(S=5.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、BC、AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿A→F→D的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)(1)当点P运动到点F时,CQ=5cm;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;(3)当点P在线段FD上运动时,求y与x之间的函数关系式.DF=BC=4MQ=时,≤x=的长度为1=DE=AC=DF=×∴,∴,MQ=x=x x<当<当6.(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.AD==50OAD===OAD=tS=××t=tADO===MP=(××t(S=×=24×=18NOD==OF FG+(==GOF==DPK=DPO=∠DPK==的距离都是∴,即可得:7.(2013•涪陵区校级模拟)如图,在Rt△ABC中,AB=AC=.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.t=,当t时,t,当<S=t。
动点之相似三角形问题【例4】在边长为4的正方形ABCD 中,动点E 以每秒1个单位长度的速度从点A 开始沿边AB 向点B 运动,动点F 以每秒2个单位长度的速度从点B 开始沿边BC 向点C 运动,动点E 比动点F 先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F 的运动时间为t 秒.()1如图1,连接DE ,AF ,若DE AF ⊥,求t 的值()2如图2,连接,EF DF ,当t 为何值时,?EBF DCF【答案】(1)t=1;(2) 当t 为秒时,EBF DCF【解析】(1)利用正方形的性质及条件,得出ABF DAE ≌,由BF=AE ,列出方程解方程即可(2)EBF DCF ~,得到EB BF DC CF =,用t 表示出BF 、AE 、FC 、BE 列出方程解方程即可,最后对t 的取值进行取舍【详解】解:()1四边形ABCD 是正方形,90AB AD ABF DAE ︒∴=∠=∠=90ADE AED ︒∴∠+∠=DE AF ⊥90BAF AED ︒∴∠+∠=BAF ADE ∴∠=∠ABF DAE ∴≌由题意得,2,1BF t AE t ==+21t t ∴=+解得:1t =()2若EBF DCF ~ 则EB BF DC CF = 1,2AE t BF t =+=413BE t t ∴=-+=-,42CF t =-32442t t t -∴=-解得129922t t == 由题意知:2t ≤92t -∴=∴当t 为秒时,EBF DCF ~【点睛】本题考查正方形基本性质、全等三角形的判定与性质、相似三角形的判定与性质,第二问的关键在于能够写出比例式列出方程,最后要记得对方程的解进行取舍【变式4-1】已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A(﹣3,0),C(1,0),BC =34AC(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP =DQ =m ,问是否存在这样的m ,使得△APQ 与△ADB 相似?如存在,请求出m 的值;如不存在,请说明理由.【答案】(1)y=34x+94;(2)D点位置见解析,D(134,0);(3)符合要求的m的值为125 36或25 9.【解析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB 两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2=AC•AD.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴AP•AD=AB•AQ,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴AP•AB=AD•AQ,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.【变式4-2】如图,已知抛物线2y ax bx c =++经过A(-3,0)、B(8,0)、C(0,4)三点,点D 是抛物线上的动点,连结AD 与y 轴相交于点E ,连结AC ,CD .(1)求抛物线所对应的函数表达式;(2)当AD 平分∠CAB 时.①求直线AD 所对应的函数表达式;②设P 是x 轴上的一个动点,若△PAD 与△CAD 相似,求点P 的坐标.【答案】(1)215466y x x =-++;(2)①1322y x =+;②(2,0)或(13,0). 【解析】(1)将()30A -,、()8,0B 、()0,4C 点坐标代入抛物线2y ax bx c =++,化简计算即可;(2)①设()0,E t ,根据AD 平分CAB ∠,EH AC ⊥,EO x ⊥轴,求得5AC =,并证得CHE ∽ COA ,利用A EH OA CE C = 可的32t =,可得E 点坐标,把()30A -,,30,2E ⎛⎫ ⎪⎝⎭代入y kx b =+,化简可得AD 所对应的函数表达式;②因为P 是x 轴上的一个动点,且PAD △与CAD 相似,并且ACD 是腰长为5的等腰三角形,所以P 点有两种情况:AD 为等腰三角形的斜边,或者以AD 为腰,2P A 为底,分别讨论求解即可.【详解】解(1)∵抛物线经过()30A -,、()8,0B 、()0,4C 三点,∴93064804a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:16564a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为215466y x x =-++;(2)①作EH AC ⊥于点H ,如图,设()0,E t .∵AD 平分CAB ∠,EH AC ⊥,EO x ⊥轴,∴EH EO t ==,4CE t =-,在Rt OAC △中,5AC ==.∵90CHE COA ∠=∠= HCE OCA ∠=∠,∴CHE ∽ COA , ∴A EH OA CE C =∴435t t -=,解得:32t =, ∴30,2E ⎛⎫ ⎪⎝⎭,设直线AD 的表达式为y kx b =+,把()30A -,,30,2E ⎛⎫ ⎪⎝⎭代入, 得0332k b b =-+⎧⎪⎨=⎪⎩,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 所对应的函数表达式为1322y x =+; ②直线AD 与二次函数相交于点D , ∴2154661322y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩解得30x y =-⎧⎨=⎩或54x y =⎧⎨=⎩, 点D 在第一象限,∴点D 坐标为()5,4,∴5DC AC ==,且DC AB ∥,∴ACD 是腰长为5的等腰三角形, P 是x 轴上的一个动点,且PAD △与CAD 相似,∴PAD △也为等腰三角形,如上图示,当AD 为等腰三角形的斜边时,115P A PD ==,()3,0A - ∴点1P 的坐标为()2,0;当以AD 为腰,2P A 为底时,作2DF AP ⊥ 点D 坐标为()5,4,()30A -,∴358AF OA OF =+=+=∴2216AP AF ==,2216313OP AP OA =-=-=,∴点P 的坐标为()13,0.综上所述点P 的坐标为()2,0或()13,0.【点睛】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和角平分线的性质;会利用待定系数法求二次函数和一次函数解析式;灵活利用相似比表示线段之间的关系;理解坐标与图形性质.。
经典相似三角形1/ 4相似三角形(附答案)5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.分析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形.(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变.(3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形相似).(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.分析:(1)根据直角三角形中30度角所对的直角边是斜边的一半,可知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断△ADE∽△AEC;(3)要求△BEC与△BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作△BEA的边BE边上的高即可求解.解:(1)AD=DE,AE=CE=EB.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?分析:要使以P、B、Q为顶点的三角形与△BDC相似,则要分两两种情况进行分析.分别是△PBQ∽△BDC或△QBP∽△BDC,从而解得所需的时间.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B 开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.分析:设经过t秒后,△PBQ与△ABC相似,根据路程公式可得AP=2t,BQ=4t,BP=10﹣2t,然后利用相似三角形的性质对应边的比相等列出方程求解即可.解:设经过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.分析:因为此题是特殊的三角形,所以首先要分析等腰直角三角形的性质:可得锐角为45°,根据角之间的关系,利用如果两个三角形的三组对应边的比相等,那么这两个三角形相似可判定三角形相似;再根据性质得到比例线段,有夹角相等证得△ECN∽△MEN.证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(2)与(1)同理△BEM∽△CNE,∴.又∵BE=EC,∴,则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA 边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.分析:若以点Q、A、P为顶点的三角形与△ABC相似,有四种情况:①△APQ∽△BAC,此时得AQ:BC=AP:AB;②△APQ∽△BCA,此时得AQ:AB=AP:BC;可根据上述四种情况所得到的不同的对应成比例线段求出t的值.解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.。
动点构成的相似问题:1、如图正方形ABCD 的边长为2,AE=EB ,线段MN 的两端点分别在CB 、CD 上滑动,且MN=1,当CM 为何值时△AED 与以M 、N 、C 为顶点的三角形相似?E NM CB DA2、如图,矩形ABCD 中,E 为BC 上一点,DF⊥AE 于F.(1)ΔABE 与ΔADF 相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF 的长。
3、如图,△ABC 中,AB=6 cm ,AC=12 cm ,动点D 从点A 出发到点B 止.动点E 从点C出发到点A 止.点D 运动的速度为1 cm /s ,点E 运动的速度为2 cm /s .如果两点同时运动,那么以点A 、D 、E 为顶点的三角形与△ABC 相似时.运动的时间是多少?4、如图,△ABC 中,∠C=90°,AC=3cm,BC=4cm,动点P 从点B 出发以2cm/s 的速度向点C 移动,动点Q 从C 出发以1cm/s 的速度向点A 移动,如果动点P 、Q 同时出发,要使△CPQ 与△CBA 相似,所需要的时间是多少秒?5、已知:Rt△OAB 在直角坐标系中的位置如图所示,P(3,4)为OB 的中点,点C 为折线OAB 上的动点,线段PC 把Rt△O AB 分割成两部分.问:点C 在什么位置时,分割得到的三角形与Rt△OAB 相似?(注:在图上画出所有符合要求的线段PC ,并求出相应的点C 的坐标).6、如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR//BA 交AC 于点R ,连结PR ,当t 为何值时,△APR∽△PRQ?7、如图,直线n x y +-=2(n >0)与轴轴、y x 分别交于点B A 、,16=∆OAB S ,抛物线)0(2≠+=a bx ax y 经过点A ,顶点M 在直线n x y +-=2上.(1)求n 的值;(2)求抛物线的解析式;(3)如果抛物线的对称轴与x 轴交于点N ,那么在对称轴上找一点P ,使得OPN ∆和AMN ∆相似,求点P 的坐标.2019-2020学年数学中考模拟试卷一、选择题1.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4 2.13的倒数是( ) A.13B.3C.3-D.13- 3.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc >0;②4a+b =0;③若点B(﹣3,y 1)、C(﹣4,y 2)为函数图象上的两点,则y 2<y 1;④a+b+c =0.其中,正确结论的个数是( )A.1B.2C.3D.44.下列命题中,真命题的是( )A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形5.如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正确的是( )A .BF=12DFB .S △AFD =2S △EFBC .四边形AECD 是等腰梯形 D .∠AEB =∠ADC6.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则sin ∠FCD =( )A .34 B .35 C .45 D .7.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD =15°,且AD∥OC,则∠BOC的度数为( )A.120°B.105°C.100°D.110°8.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在平面直角坐标系中,直线l:y=与y轴交于点B1,以OB1为一边在OB1右侧作等边三角形A1OB1,过点A1作A1B2平行于y轴,交直线l于点B2,以A1B2为一边在A1B2右侧作等边三角形A2A1B2,过点A2作A2B3平行于y轴,交直线l于点B3,以A2B3为一边在A2B3右侧作等边三角形A3A2B3,……则点A2019的纵坐标是()A. B. C. D.10.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.1511.某校规定学生的学期数学成绩满分为100分,其中平时学习成绩占30%,期末卷面成绩占70%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.83分B.86分C.87分D.92.4分12.如果方程x2﹣8x+15=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为()A.34B.35C.45D.34或35二、填空题13.如图,正方形ABCD的顶点A、D分别在x轴、y轴上,∠ADO=30°,OA=2,反比例函y=kx经过CD的中点M,那么k=_____.14.《九章算术》是我国古代数学成就的杰出代表作,书中记载:“今有圆材埋壁中,不知大小.以锯锯之,深1寸,锯道长1尺,问经几何?“其意思为:“如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深1寸(即DE =1寸),锯道长1尺(即弦AB =1尺),问这块圆形木材的直径是多少?”该问题的答案是_____(注:1尺=10寸)15.已知不等式组1x x a >⎧⎨<⎩无解,则a 的取值范围是_____. 16.关于x 的一元二次方程2x 2﹣3x+m =0有两个相等的实数根,则实数m =_____.17.把代数式3244a a a -+分解因式的________________________。
因动点产生的相似问题提高练习1、(2015・无锡校级三模)己知抛物线y=・x?+l的顶点为P,点A是第一彖限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD, PD交AB于点E, APAD与APEA相似吗?()A.始终不相似B.始终相似C.只有AB=AD吋相似D.无法确定2、(2016・贵阳模拟)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(・ 1, ())、(0, - 3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线少x轴的另一交点,点D为y轴上一点,且DC=DE, 求出点D的处标;(3)在第二问的条件下,在直线DE±存在点P,使得以C、D、P为顶点的三角形与ADOC 相似,请你直接写出所有满足条件的点P的坐标.3、(2016*重庆模拟)如图,已知抛物线y= - — (x+2) (x - a) (a>0)与x轴交于点A, B a(点A在点B右侧),与y轴交于点C,抛物线过点N (6, — 4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中〃抛物线过点N (6,・4) 〃这一条件去掉,试问在第四象限内,抛物线上是否存在点F,便得以点B, A, F为顶点的三角形^/ABAC相似?若存在,求a的值;若不存在,请说明理由.4、(2015*黔南州)如图,在平面直角坐标系xOy中,抛物线y=-尹+bx+c过点A (0, 4) 和C (8, 0), P (t, 0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90。
得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A, B, D为顶点的三角形与AAOP相似?若存在,求此时t的值;5、(2015・鄂州)如图,在平面直角坐标系xOy中,直线y=^x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x= - 且经过A、C两点,与x轴的另一•交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA, PC.求APAC的面积的最大值,并求出此时点P的处标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.6、(2015*内江)如图,抛物线与x 轴交于点A (・£, 0)、点 (0, 1),连接 BC. (1) 求抛物线的函数关系式;(2) 点N 为抛物线上的一个动点,过点N 作NP 丄x 轴于点P,(2, 0),与y 轴交于点C设点N 的横坐标为t ( ■壬<t<2),求ZXABN 的面积S-Ut 的函数关系式;7、(2015*潍坊)如图,在平|Ai直角坐标系中,抛物线y=mx2 - 8mx+4m+2 (m>0)与y轴的交点为A,与x轴的交点分别为B (xi,0), C(X2, 0),且X2・XI=4,直线AD〃x轴, 在x轴上有一动点E (t, 0)过点E作平行于y轴的点线1与抛物线、直线AD的交点分别为P、Q. (1)求抛物线的解析式;(2)当0<t<8时,求ZiAPC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△ AOB相似?若存在,求出此时(的值;若不存在,请说明理山.8、(2015*甘孜州)如图,己知抛物线y=ax2 - 5ax+2 (a*0)与y轴交于点C,与x轴交于点A (1, 0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH丄x轴,垂足为H,以B, N, H为顶点的三角形是否能够与AOBC相似(排除全等的情况)?若能,请求出所冇符合条件的点N的坐标;若不能,请说明理由.9、(2015*福建)如图,在平Ifli直角坐标系中,顶点为A (1,・1)的抛物线经过点B (5, 3),且与x 轴交于C, D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且ZMND=ZOAB, .^ADMN与厶OAB 相似时,请你直接写出点M的处标.10、(2015*苏州)如图,已知二次函数y=x2+ (1 - m) x - m (其中0<mVl)的图彖与x 轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线1.设P为对称轴1上的点,连接PA、PC, PA=PC(1) ________________________ ZABC的度数为;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在着点Q (与原点O不璽合),使得以Q、B、C为顶点的三角形与APAC相似,几线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.因动点产生的相似三角形问题 答案:1. (2015・无锡校级三模)已知抛物线y 二・『+1的顶点为P,点A 是第一象限内该二次函数 图象上一点,过点A 作x 轴的平行线交二次函数图象于点B,分别过点B 、A 作x 轴的垂线, 垂足分别为C 、D,连结PA 、PD, PD 交AB 于点E, APAD 与Z\PEA 相似吗?( )A.始终不和似B.始终相似C.只有AB=AD 时相似D.无法确定【考点】二次函数综合题.【专题】压轴题.【分析】先求出点P 的坐标,从而得到0P 的长,再设点A 的横坐标为m,表示出AD,再 表示出OD 、OF 、PF 、AF,然后根据APEF 和APDO 相似,根据相似三角形对应边成比例 列式求出EF,然后利用勾股定理表示出PA= PE 、PD,从而得到里二孕,再根据两边对应成比例且夹角相等,两三角形相似解答.【解答】解:令x=0,则y=l, ・・・OP=1,设点A 的横处标为m,贝I 」AD= - m 2+l,VAB 丄y 轴,AD 丄x 轴,AF=OD=m, 0F= - m 2+1, PF=1 - ( - m 24-1) =m 2, 在 RtAPAF 屮,PA^P H+AF 2- (m 2)2+m 2=m 4+m 2, 在 RtAPOD 中,PD 二 Jop 2 +o 齐二J12+叩 2= J 1+口2 由 AB 〃x 轴得,△PEF S APDO,・ PF_PE** OP~PD ,解得,PE=m 271+i?».•.PA 2=PD*PE=m 4+m 2,・ PA_PE• ■ -- — -- ,PD PA VZAPE=ZDPA, •••△PAD S APEA, 即,Z\PAD 与APEA 始终相似. 故选B ・【点评】木题是二次函数综合题,主耍考查了二次函数图象上点的坐标特征,相似三角形的 判定与性质,勾股定理的应用,表示出两个三角形的公共角的夹边成比例是解题的关键. PD PA2.(2016<贵阳模拟)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(・1, ())、(0, - 3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线少x轴的另一交点,点D为y轴上一点,且DC=DE, 求出点D的处标;(3)在第二问的条件下,在直线DE±存在点P,使得以C、D、P为顶点的三角形与△ DOC 相似,请你直接写出所有满足条件的点P的坐标.【专题】代数几何综合题.【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组求出b、c的值,即可得解;(2)令y=0,利用抛物线解析式求出点C的处标,设点D的坐标为(0, m),作EF丄y轴于点F,利用勾股定理列式表示出DC2A/DE2,然后解方程求出m的值,即可得到点D的坐标;(3)根据点C、D、E的坐标判定ACOD和ADFE全等,根据全等三角形对应角相等可得ZEDF=ZDCO,然示求出CD丄DE,再利用勾股定理求出CD的长度,然后①分OC与CD 是对应边;②OC与DP是对应边;根据相似三角形对应边成比例列式求出DP的长度,过点P作PG 丄y轴于点G,再分点P在点D的左边打右边两种情况,分別求出DG、PG的长度,结合平面直角处标系即可写出点P的处标.【解答】解:(1) •・•抛物线y=x2+bx+c经过A (-1, 0)、B (0, - 3),J1一b+c二0(c二_ 3 ,,(b二-2解得,[c= - 3故抛物线的函数解析式为y=x2 - 2x - 3;(2)令x—2x・ 3=0,解得X1= - 1, X2=3,则点C 的坐标为(3, 0),y=x 2 - 2x - 3= (x - 1) 2-4,・・・点E 坐标为(1, -4),设点D 的坐标为(0, m),作EF 丄y 轴于点F,•.*DC 2=OD 2+OC 2=m 2+32, DE?二D N+EF 2二(m+4) 2+12,VDC=DE,m 2+9=m 2+8m+16+1,解得m= - 1,・••点D 的坐标为(0, - 1);(3)・・•点 C (3, 0), D (0,・ 1), E (1,・4),・・・CO=DF=3, DO=EF=1,根据勾股定理,。
2021年中考数学一轮复习专题《四边形综合:动点与相似》高频考点训练(一)1.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,的值为.2.我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方.即如果一个直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么a2+b2=c2.(1)直接填空:如图①,若a=3,b=4,则c=;若a+b=4,c=3,则直角三角形的面积是.(2)观察图②,其中两个相同的直角三角形边AE、EB在一条直线上,请利用几何图形的之间的面积关系,试说明a2+b2=c2.(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长?3.四边形ABCD是矩形,点E是射线BC上一点,连接AC,DE.(1)如图1,点E在边BC的延长线上,BE=AC,若∠ACB=40°,求∠E的度数;(2)如图2,点E在边BC的延长线上,BE=AC,若M是DE的中点,连接AM,CM,求证:AM⊥MC;(3)如图3,点E在边BC上,射线AE交射线DC于点F,∠AED=2∠AEB,AF =4,AB=4,则CE=.(直接写出结果)4.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1])当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.5.如图,线段AB=4,射线BM⊥AB,P为射线BM上一点(0<BP<4),以AP为边作正方形APCD,且点C,D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP.连接CE并延长交线段AB于点F.(1)求证:AE=CE;(2)求证:CF⊥AB;(3)试探究△AEF的周长是否是定值?若是定值,求出△AEF的周长;若不是定值,说明理由.6.四边形ABCD中,E为边BC上一点,F为边CD上一点,且∠AEF=90°.(1)如图1,若ABCD为正方形,E为BC中点,求证:=.(2)若ABCD为平行四边形,∠AFE=∠ADC,①如图2,若∠AFE=60°,求的值.②如图3,若AB=BC,EC=2CF,直接写出cos∠AFE值为.7.[阅读发现]如图①.在正方形ABCD的外侧.作两个等边三角形ABE和ADF,连接ED、FC,ED与FC交于点M,则图中△ADE≌△DFC(不用证明),可知ED=FC.∠DMC =°.[拓展应用]如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连接ED、FC,ED与FC交于点M.(1)求证:ED=FC;(2)若∠ADE=20°,直接写出∠DMC的度数.8.实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD 上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.9.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.10.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.【问题提出】如图①,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:第一步:如图②,将△ADN绕点A按顺时针方向旋转90°得到△ABE,再证明E、B、M三点在一条直线上.第二步:证明△AEM≌△ANM.请你按照证明思路写出完整的证明过程.【初步思考】如图③,四边形ABCD和CEFG为正方形,连接DG、BE,得到△DCG和△BCE.下列关于这两个三角形的结论:①周长相等;②面积相等;③∠CBE=∠CDG.其中所有正确结论的序号是.【深入研究】如图④,分别以▱ABCD的四条边为边向外作正方形,连接EF,GH,IJ,KL.若▱ABCD 的面积为8,则图中阴影部分(四个三角形)的面积之和为.参考答案1.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH=9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG:S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.2.(1)解:若a=3,b=4,则由勾股定理得,c===5,若aa+b=4,c=3,则(a+b)2=42,a2+b2=32=9,即a2+2ab+b2=16,∴2ab+9=16,∴ab=,∴直角三角形的面积=ab=;故答案为:5;;(2)证明:图②的面积=S△DAE+S△CBE+S△DEC=ab+ab+c2,又图②的面积=S四边形ABCD=(a+b)(a+b)=(a+b)2,∴ab+ab+c2=(a+b)2,∴ab+ab+c2=a2+2ab+b2,即a2+b2=c2;(3)解:由折叠的性质得:AF=AD=10,DE=FE,∵四边形ABCD是矩形,∴BC=AD=10,CD=AB=8,∠B=∠C=90°,在Rt△ABF中,AB2+BF2=AF2,即82+BF2=102,解得:BF=6,∵BC=10,∴CF=BC﹣BF=10﹣6=4,设EF=x,则DE=x,∴EC=DC﹣DE=8﹣x,在Rt△ECF中,EC2+CF2=EF2,即(8﹣x)2+42=x2,解得:x=5,即EF=5.3.解:(1)如图1,连接BD,与AC交于点O,∵四边形ABCD是矩形,∴AC=BD,OB=OC∴∠DBC=∠ACB=40°∵BE=AC,∴BD=BE,∴∠BDE=∠E,∴∠E==70°;(2)如图2,延长CM交AD延长线于G,∵AG∥BE,∴∠GDM=∠E,∠G=∠GCE,∵M是DE的中点,∴DM=EM,∴△DMG≌△EMC(AAS),∴CE=DG,CM=MG,∴BC+CE=AD+DG,即AG=BE,由(1)知:BE=BD=AC,∴AG=AC,又∵CM=MG,∴AM⊥MC;(3)如图3,取AF的中点P,连接PD,则PD=AP=AF=2,∴∠PDA=∠PAD,在矩形ABCD中,∠AEB=∠PAD,∠AED=2∠AEB,∴∠DPE=∠PAD+∠PDA=2∠PAD=2∠AEB=∠AED,∴DE=PD=2,在△DEC中,∠DCE=90°,AB=DC=4,∴CE===2.故答案为:2.4.解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x 1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.5.解:(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=PA,∴∠APD=∠CPD=45°,∴△AEP≌△CEP(SAS),∴AE=CE;(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CHP=90°,∠AHF=∠CHP,∴∠AHF+∠PAB=90°,∴∠AFH=90°,∴CF⊥AB;(3)△AEF的周长是定值,△AEF的周长为8.过点C作CN⊥PB于点N.∵CF⊥AB,BM⊥AB,∴FC∥BN,∴∠CPN=∠PCF=∠EAP=∠PAB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴△AEF的周长=AE+EF+AF,=CE+EF+AF,=BN+AF,=PN+PB+AF,=AB+CN+AF,=AB+BF+AF,=2AB,=8.6.(1)证明:如图1中,设正方形的边长为2a.∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∠FEC+∠EFC=90°,∴∠AEB=∠EFC,∴△ABE∽△ECF,∴,∵BE=EC=a,AB=CD=2a,∴CF=a,DF=CD﹣CF=a,∴.(2)①在AD上截取DM=DF,连接MF.∵∠ADC=60°,∴△DMF是等边三角形,∴DF=MF,∠DMF=∠DFM=60°,∴∠AMF=120°,∵四边形ABCD为平行四边形,AD∥BC,∴∠ECF=120°,∴∠AMF=∠ECF,∵∠AFE=60°,∴∠AFM+∠EFC=60°,∵∠EFC+∠FEC=60°,∴∠AFM=∠FEC,∴△AMF∽△FCE,∴,∵∠AFE=60°,∠AEF=90°,∴,∴.②如图3,作FT=FD交AD于点T,作FH⊥AD于H,则∠FTD=∠FDT,∴180°﹣∠FTD=180°﹣∠D,∴∠ATF=∠C,又∵∠TAF+∠D=∠AFE+∠CFE,且∠D=∠AFE,∴∠TAF=∠CFE,∴△FCE∽△ATF,∴,设CF=2,则CE=4,可设AT=x,则TF=2x,AD=CD=2x+2,∴DH=DT=,且,由cos∠AFE=cos∠D,得,解得x=6,∴cos∠AFE=.故答案为:.7.解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=∠FDA+∠ADC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为:90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF(SAS).∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.8.解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=A′D,AE=A′E,∠ADE=∠A′DE=45°,∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AE,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△C′EB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△C′EB′,∴AC′=B′E,由折叠知,B′E=BE,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.9.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.10.【问题提出】(1)证明:将△ADN绕点A按顺时针方向旋转90°得到△ABE,在正方形ABCD中,∠BAD=∠ABM=∠D=90°,由旋转可知△ADN≌△ABE,∴∠D=∠ABE=90°,∠DAN=∠BAE,AN=AE,DN=BE,∴∠ABE+∠ABM=180°,∴E、B、M三点在一条直线上,∵∠MAN=45°,∴∠DAN+∠BAM=45°,∵∠DAN=∠BAE,∴∠BAE+∠BAM=∠EAM=45°,∴∠EAM=∠MAN,∵AN=AE,AM=AM,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM,∴MN=DN+BM,【初步思考】解:∵BE≠DG,∴△DCG和△BCE的周长不一定相等,故①不正确;∵正方形CEFG绕点C旋转过程中,∠CBE≠∠CDG.∴③不正确;如图1,过点E作BC的平行线,过点B作CE的平行线,两线交于点H,连接CH.则四边形BHEC为平行四边形,∴BC=HE,S△BCE==S△CHE,∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCG=180°,∵∠HEC+∠BCE=180°,∴∠DCG=∠HEC,∵BC=HE=CD,∴△DCG≌△HEC(SAS),∴S△CHE=S△DCG,∴S△DCG=S△BCE.故②正确,故答案为:②.【深入研究】解:图中阴影部分(四个三角形)的面积之和为16.如图2,连接AC,BD,由【初步思考】的结论可知:S△AEF=S△ABD=,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×8=16.故答案为:16.。
动点与相似综合题
1.如图,在平面直角标系中,已知点A(0,6),B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的
速度向点O移动,同时点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)求t为何值时,△APQ与△AOB相似?并求出
此时点P与点Q的坐标;
(
3)当t为何值时,△APQ的面积为个平方单位?
解:(1)设直线AB的解析式为y=kx+b,
则解得∴y=- x+6;
(2)由题意可知AO=6,BO=8,则AB=10,且AP=t,BQ=2t,
△APQ与△AOB相似有两种情况:
①
当∠APQ=∠AOB时,有= ,即= ,解得t= ,
根据相似三角形的性质可得P(0,),Q(,);
②当∠AQP=∠AOB时,有= ,即= ,解得t= ,
根据相似三角形的性质可得P(0,),Q(,);
(3)过Q作QH⊥OA于H,如图,
∴△AHQ∽△AOB,∴= ,∴= ,
∴HQ= (10-2t),∴•t• (10-2t)= ,
解得t=2或t=3.
2如图,在钝角三角形ABC中,AB=6cm,AC=12cm,D从A出发到B止,E从C出发到A止,D运的速度为1cm/s,E运的速度为2cm/s,如果两同时开始运,那么当以A、D、E为顶
的三角形△ABC时,运的时间是多少秒?
解:当运动的时间是t秒时,以点A、E、D为顶点的三角形与△ABC
相似,
①当时,,∴t=3(s);
②当时,,∴t=4.8(s);
综上所述,当t为3秒或4.8秒时,以点A、D、E为顶点的三角形与△ABC相似.
3如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点
匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,
问:是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t
的值.
解:当△ACD∽△MNA时,则,即,∴36-12t=3t.∴t=2.4.
当△ACD∽△NMA时,则,即.∴6t=18-6t.∴t=1.5.
答:存在,t为2.4;1.5.
5(2008•青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
4、如图,在梯形ABCD中,AD∥BC,AD=2,BC=10,对角线AC=4,E从B出发,以2cm/s的速度向C运,运时间
为t(s)(0≤t≤5).那么当t为何值时,以A、E、C为顶的三角形△ADC.
解:(1)在Rt△ABC中,AB= ,
由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC,
∴= ,∴= ,∴t= .所以当t= 时,PQ∥BC.
(2)过点P作PH⊥AC于H.
∵△APH∽△ABC,∴= ,∴= ,
∴PH=3- t,∴y= ×AQ×PH= ×2t×(3- t)=- t2+3t.
(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t <5).解答下列问题:
(1)当t为何值时,PE∥AB;
解:(1)∵PE∥AB,
∴.而DE=t,DP=10-t,∴,
∴,∴当(s),PE∥AB.。