龙贝格积分的程序实现
- 格式:docx
- 大小:227.70 KB
- 文档页数:3
龙贝格积分的程序实现(总5页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March计算方法实验报告3【课题名称】龙贝格积分的程序实现【目的和意义】函数变化有急有缓,为了照顾变化剧烈部分的误差,我们需要加密格点。
对于变化缓慢的部分,加密格点会造成计算的浪费。
以此我们介绍一种算法,可以自动在变化剧烈的地方加密格点计算,而变化缓慢的地方,则取稀疏的格点。
实际计算中,由于要事先给出一个合适的步长往往很困难,所以我们往往采用变步长的计算方案,即在步长逐步分半的过程中,反复利用复化求积公式进行计算,直到所求得的积分值满足精度要求为止。
在步长逐步分半过程中将粗糙的积分值逐步加工为精度较高的积分值,或者说将收敛缓慢的梯形值序列加工成收敛迅速的积分值序列。
这种加速方法称为龙贝格算法。
【计算公式】设表示复化梯形求得的积分值,其下标是等分数,由此则有递推公式其中 ,其中由复化梯形公式的截断误差公式可得, 。
由此可知, 。
这样导出的加速公式是辛普森公式: 同理可得n n n S S C 15115162-= n n n C C R 631_63642=。
由此便可得加速的算法:龙贝格算法。
【龙贝格求积算法流程图】∑-=++=10212)(221n k k n n x f h T T h k a x n a b h k )21(,21++=-=+)(''12)()()(2ξf h a b f T f I n --=-)(''212)()()(22ηf h a b f T f I n ⎪⎪⎭⎫ ⎝⎛--=-n n T T I 31342-≈n n n T T S 31342-=【龙贝格求积算法Matlab主程序】function[t]=rbg(f,a,b,c) %定义龙贝格积分函数,f为待积函数,a与b为积分上下限,c为精度控制;t=zeros(15,4); %生成一零矩阵,用于存放t值;t(1,1)=(b-a)/2*(f(a)+f(b)); %由于矩阵行列值均从1开始,所以将原本的t(0,0)记为t(1,1),行列均加1;for k=2:4 %先算出第一列的4个(包括t(1,1))值,以便程后面可以直接循环计算;sum=0;for i=1:2^(k-2)sum=sum+f(a+(2*i-1)*(b-a)/2^(k-1));endt(k,1)=*t(k-1,1)+(b-a)/2^(k-1)*sum;for i=2:kt(k,i)=(4^(i-1)*t(k,i-1)-t(k-1,i-1))/(4^(i-1)-1);endendfor k=5:15 %循环按照公式计算出t值;sum=0;for i=1:2^(k-2)sum=sum+f(a+(2*i-1)*(b-a)/2^(k-1));endt(k,1)=*t(k-1,1)+(b-a)/2^(k-1)*sum;for i=2:4t(k,i)=(4^(i-1)*t(k,i-1)-t(k-1,i-1))/(4^(i-1)-1);endif k>6 %可知最小二分次数,防止假收敛;if abs(t(k,4)-t(k-1,4))<c %若此时t值满足精度,则输出积分值;disp(['答案 ',num2str(t(k,4))]);break;endendendif k>=15disp(['不收敛']); %二分次数达15次仍不收敛;end【调用函数解题】由于被积函数sin(x)/x在积分下限0时函数值难定,故取积分下限为10^(-60)。
2第二题 求数值积分11sin 3sin x dx x x -+⎰精确到610-。
龙贝格的算法思想:Romberg 方法也称为逐次分半加速法。
它是在复化梯形公式的基础上,利用Richardson 外推法,构造出一种高精度的数值积分方法。
在等距基点的情况下,用计算机计算积分值通常都采用把区间逐次分半的方法进行。
这样,前一次分割得到的函数值在分半以后仍可被利用,且易于编程 。
2.2.1程序设计关键步骤(1)准备初值aa[0][0]=(b-a)*(F(a)+F(b))/2.0来实现就算初值。
(2)用 for ( n=i,j=1; n>0;n--,j++)aa[j][n]=(pf(2*j+1)*aa[j-1][n+1]-aa[j-1][n])/(pf(j*2+1)-1) 来实现(2)(k )00T T 到的计算。
(3)用fabs(aa[i][1]-aa[i][0])判断数值的精度,如果fabs(aa[i][1]-aa[i][0]<e,则返回gcc(a,b,aa,i+1)进行计算下一个要用到得值; 如果fabs(aa[i][1]-aa[i][0]> e ,则根据aa[i+1][0]=(pf(2*i+3)*aa[i][1]-aa[i][0])/(pf(2*i+3)-1)而得到结果。
2.2.2程序运行结果如下图所示#include "stdafx.h"#include <iostream>#include <math.h>#define F(x) (sin(x)/(3*x+sin(x))) //函数举例。
using namespace std;//------------步长及4,16,64.......的实现----------double pf (int i){int s=1;for (int j=0;j<i;j++)s*=2;return s/2;}//---------定义一个求t1,t2......的函数-------------double gcc (double a, double b,double aa[][20],int i){double s,h,x;h=(b-a)/pf(i);s=0;x=a+h/3;do{s+=F(x);x+=h;}while (x<b);aa[0][i]=aa[0][i-1]/2+h/2*s;return 0;}//----------------------主函数---------------------------int main(){double aa[20][20]={0},e,a,b,h;int j,i,n;cout <<"请输入积分区间:\na= ";cin >>a;cout <<"b= ";cin >>b;cout <<"请输入精度:e=";cin >>e;aa[0][0]=(b-a)*(F(a)+F(b))/2.0;gcc(a,b,aa,1);aa[1][0]=(4*aa[0][1]-aa[0][0])/3;for (i=1;i<20;i++){gcc(a,b,aa,i+1);//求下一个要用的t。
龙贝格算法11医软2班刘名奎简介:龙贝格求积公式也称为逐次分半加速法。
它是在梯形公式、辛卜生公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。
作为一种外推算法, 它在不增加计算量的前提下提高了误差的精度.在等距基点的情况下,用计算机计算积分值通常都采用把区间逐次分半的方法进行。
这样,前一次分割得到的函数值在分半以后仍可被利用,且易于编程。
解题思路:步骤一:先确定积分上下限a、b,精度值e,再定义函数f(x),取n=1,h=(b-a)/2,=h*(f(a)+f(b))/2。
步骤二:根据求出……,再根据公式Simpson公式=-,Cotes公式=-,Romberg公式R n=-分别求出,,。
步骤三:数值积分近似值,根据Romberg公式求出函数I=。
代码:#include"iostream.h"#include"math.h"#define e 0.0000000001double f(double x){double y;if(x==0)return y=1.0;else y=sin(x)/x;return y;}void romberg(double a,double b){int i,n=1;double h,T2,S2=0,C2=0,R2=0,T1,C1,S1,R1;h=(b-a)/2;T2=h*(f(a)+f(b));while(fabs(R2-R1)>e){R1=R2;T1=T2;S1=S2;C1=C2;double sum=0;for(i=1;i<=n;i++)sum=sum+f(a+(2*i-1)*h);T2=T1/2+sum*h;S2=(4*T2-T1)/3;C2=(16*S2-S1)/15;R2=(64*C2-C1)/63;n=n*2;h=h/2;}cout<<"最后结果为:"<<"I="<<R2<<endl;}void main(){double a,b;cout<<"请输入积分上下限a,b的值并用空格隔开:"<<endl;cin>>a>>b;cout<<"积分下限a="<<a<<endl; cout<<"积分上限b="<<b<<endl;cout<<"被积函数为:y=sin(x)/x"<<endl; cout<<"结果如下"<<endl;romberg(a,b);}当I=10sin()x dx x⎰,调试结果为:当I=221x dx ⎰时,调试结果为:当I=212xdx ⎰时,调试结果为:。
实验二:龙贝格算法一、实验目的1、通过本实验理解数值积分与微分的基本原理2、掌握数值积分中常见的复合求积公式的编程实现3、掌握龙贝格算法的基本思路和迭代步骤二、实验原理三、运行结果三、代码using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication4{public delegate double F(double x);class Program{const double Precision = 0.00000000001;const int MAXRepeat = 10;static double f1(double x){double s=4/(1+x*x );return s;}static double Romberg(double a,double b, F f){int m,n,k;double[] y = new double[MAXRepeat];double h,ep,p,xk,s,q=0;h=b-a;y[0]=h*(f(a)+f(b))/2.0;//计算T`1`(h)=1/2(b-a)(f(a)+f(b));m=1;n=1;ep=Precision+1;while((ep>=Precision)&&(m<MAXRepeat)){p=0.0;for(k=0;k<n;k++){xk = a + (k + 0.5) * h; // n-1p = p + f(xk); //计算∑f(xk+h/2),T} // k=0p = (y[0] + h * p) / 2.0; //T`m`(h/2),变步长梯形求积公式s = 1.0;for (k = 1; k <= m; k++){s = 4.0 * s;// pow(4,m)q = (s * p - y[k - 1]) / (s - 1.0);//[pow(4,m)T`m`(h/2)-T`m`(h)]/[pow(4,m)-1],2m阶牛顿柯斯特公式,即龙贝格公式y[k - 1] = p;p = q;}ep = Math.Abs(q - y[m - 1]);//前后两步计算结果比较求精度m = m + 1;y[m - 1] = q;n = n + n; // 2 4 8 16h = h / 2.0;//二倍分割区间}return q;}static void Main(string[] args){double a, b, result;Console.WriteLine("请输入积分下限:");a = Convert.ToDouble(Console.ReadLine());Console.WriteLine("请输入积分上限:");b = Convert.ToDouble(Console.ReadLine());result = Romberg(a, b, new F(f1));Console.Write("定积分计算结果为:{0}:", result);Console.ReadLine();}}}四、分析本次试验使我认识到了计算机计算能力的强大,通过本次实验对数值积分与微分的基本原理有了深刻理解。
龙贝格积分 python龙贝格积分 python一、什么是龙贝格积分?龙贝格积分(Romberg integration)是一种数值积分方法,它是对梯形法的递推加速处理。
梯形法是一种比较简单的数值积分方法,但它的精度不高,而且需要很多次计算。
龙贝格积分通过递推计算,可以大大提高计算精度,并且减少计算次数。
二、如何实现龙贝格积分?在 Python 中实现龙贝格积分可以使用以下代码:```pythondef romberg(f, a, b, n):"""Calculate the Romberg Integration of f(x) from a to b with n iterations"""R = [[0] * (n+1) for _ in range(n+1)]h = b - aR[0][0] = 0.5 * h * (f(a) + f(b))for i in range(1, n+1):h = 0.5 * hsum = 0for k in range(1, 2**i, 2):sum += f(a + k*h)R[i][0] = 0.5 * R[i-1][0] + sum*hfor j in range(1, i+1):R[i][j] = (4**j*R[i][j-1] - R[i-1][j-1]) / (4**j - 1)return R[n][n]```三、代码解析1. 定义函数 romberg(f, a, b, n),其中 f 为被积函数,a 和 b 分别为积分上下限,n 为迭代次数。
2. 创建一个n+1 行n+1 列的二维数组R,用于存储递推计算的结果。
3. 计算初始值 R[0][0],即使用梯形法计算第一次迭代的结果。
4. 进行 n 次迭代,每次将步长 h 减半,并且计算新的递推值。
具体过程如下:a. 计算当前步长 h。
实验题目2 Romberg 积分法摘要考虑积分()()b aI f f x dx =⎰欲求其近似值,可以采用如下公式: (复化)梯形公式 11[()()]2n ii i hT f x f x-+==+∑2()12b a E h f η-''=-[,]a b η∈ (复化)辛卜生公式 11102[()4()()]6n i i i i hS f x f x f x -++==++∑4(4)()1802b a h E f η-⎛⎫=- ⎪⎝⎭ [,]a b η∈ (复化)柯特斯公式 111042[7()32()12()90n i i i i hC f x f x f x -++==+++∑31432()7()]i i f xf x +++6(6)2()()9454b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ 这里,梯形公式显得算法简单,具有如下递推关系121021()22n n n i i h T T f x -+==+∑因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。
但是,由于梯形公式收敛阶较低,收敛速度缓慢。
所以,如何提高收敛速度,自然是人们极为关心的课题。
为此,记0,k T 为将区间[,]a b 进行2k等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k等份的复化柯特斯积分结果。
根据李查逊(Richardson )外推加速方法,可得到1,11,,0,1,2,40,1,2,41m m k m km k m k T T T m -+-=-⎛⎫=⎪=-⎝⎭可以证明,如果()f x 充分光滑,则有,lim ()m k k T I f →∞= (m 固定),0lim ()m m T I f →∞=这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。
数值分析中的龙贝格积分法详解数值分析是一门研究数值计算方法和数值计算误差的学科,其在科学计算、工程计算以及金融计算等领域中有着广泛的应用。
而龙贝格积分法则是数值分析中常用的一种数值积分方法。
本文将详细介绍龙贝格积分法的原理、计算步骤以及应用场景。
一、龙贝格积分法的原理龙贝格积分法是一种数值积分方法,用于计算给定函数在一定区间上的积分值。
其基本思想是通过逐步逼近积分值,从而提高计算结果的精度。
具体而言,龙贝格积分法通过构造一系列逼近积分值的数列,并利用数列的收敛性质,最终得到所需的积分值。
二、龙贝格积分法的计算步骤1. 确定积分区间[a, b]以及需要计算积分的函数f(x)。
2. 将积分区间[a, b]等分为n个子区间,其中n为正整数。
即将[a, b]分为[a, x1,x2, ..., xn-1, b]。
3. 计算每个子区间的步长h = (b-a)/n。
4. 利用复化梯形公式计算第一级逼近积分值T(1):T(1) = (h/2) * [f(a) + f(b) + 2 * (f(x1) + f(x2) + ... + f(xn-1))]5. 构造递推公式,利用已知的逼近积分值T(k-1)计算第k级逼近积分值T(k):T(k) = (1/2^k) * (4^(k-1) * T(k-1) - T(k-1))6. 判断逼近积分值T(k)的精度是否满足要求,若满足则返回T(k)作为最终的积分值;若不满足,则重复步骤5,计算下一级逼近积分值。
7. 重复步骤5和步骤6,直到满足精度要求或达到迭代次数为止。
三、龙贝格积分法的应用场景龙贝格积分法在数值分析中有着广泛的应用,特别是在科学计算、工程计算以及金融计算等领域中。
以下是一些常见的应用场景:1. 科学计算:龙贝格积分法可以用于计算数学物理模型中的积分,如计算波函数的归一化常数、计算量子力学中的期望值等。
2. 工程计算:在工程领域中,往往需要对曲线或曲面进行积分计算。