龙贝格算法
- 格式:docx
- 大小:442.94 KB
- 文档页数:5
第1章 龙贝格算法研究问题阐述计算二重积分⎰⎰=b adcdxdy y x f I ),(------------------------------------(1-1)对工科生要求计算如下3个二重积分:算例1:1110()1I x y dxdy =+=⎰⎰算例2:/2200()I x y dxdy πππ=+=⎰⎰-----------------------(1-2)算例3: 1130sin()x y I dxdy x y+=+⎰⎰通常将积分区间等分数依次取2k ,并得到相应的递推式子如(2-5)所示,相应对到过程不再累述详情可以参考教材。
1112221[()()],21[(21)]222k k k k k i b a T f a f b b a b a T T f a i --=-⎧=+⎪⎪⎨--⎪=++-⎪⎩∑----------------------------(2-5) 最终得到计算机计算步骤如下:(1)计算初值T1; (2)K 1;(3)计算新的T2,一直迭代计算2kT ;(4)精度控制:如果122||kk T T ε--<,则停止计算,并将2k T 作为积分的近似数值,否则循环将不停止。
对第四点,通常可以加入一个循环最高次数,防止程序陷入死循环。
function f=fxy(x,y,w) if w==1f=x+y; %函数1elseif w==2f=sin(abs(x-y)); %函数2elseif w==3f=sin(x+y)/(x+y); %函数3if x+y==0f=1;end;end;function gy=gy(y,a,b,w,error)k=1;lock=0;count=0;T1=(b-a)*(fxy(a,y,w)+fxy(b,y,w))/2;while lock==0&&count<100 %限定最多迭代20次T2=T2kx(y,T1,a,b,k,w);if abs(T2-T1)<errorgy=T2;lock=1;elseT1=T2;count=count+1;k=k+1;end;end% count%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 龙贝格算法%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% 作者:XXXX %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% 时间:2012/4/16 %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%clear all; clc;%% 详情见报告Romberg公式介绍部分clear all;clc;which=1; %表示计算的函数f1,f2,f3%积分区间a=0;if which==1||which==3b1=1;b2=1; %函数1和2的区间elseb1=pi;b2=pi/2; %函数2的区间end%% 计算主程序k=1;lock=0;count=0; %辅助量error=0.0001; %计算精度% gy=gy(y,a,b,w,error)T1=(b2-a)*(gy(a,a,b1,which,error)+gy(b2,a,b1,which,error))/2; while lock==0&&count<100 %限定最多迭代20次T2=T2ky(T1,a,b1,b2,k,which,error);if abs(T2-T1)<errorI=T2;lock=1;elseT1=T2;function T2kx=T2kx(y,T2kx_1,a,b,k,w)temp1=0;for i=1:2^(k-1)temp1=temp1+fxy(a+(2*i-1)*(b-a)/2^k,y,w);endT2kx=0.5*T2kx_1+temp1*(b-a)/2^k;function T2ky=T2ky(T2ky_1,a,b1,b2,k,w,error)temp1=0;for i=1:2^(k-1)temp1=temp1+gy(a+(2*i-1)*(b2-a)/2^k,a,b1,w,error);endT2ky=0.5*T2ky_1+temp1*(b2-a)/2^k;。
龙贝格观测器离散算法
龙贝格观测器是一种用于估计系统状态的观测器,常用于系统控制和滤波问题中。
它基于离散时间的模型,通过对系统输入输出信号进行观测和处理,得到对系统状态的估计。
龙贝格观测器的离散算法可以描述为以下步骤:
1. 定义系统模型:首先需要确定系统的离散状态空间模型,包括状态方程和输出方程。
状态方程用于描述系统状态的更新,输出方程用于描述系统输出信号和状态之间的关系。
2. 初始化观测器状态:将观测器的状态初始化为系统初值的估计值。
3. 观测器更新:根据观测器的状态和系统的输入信号,使用状态方程对观测器的状态进行更新。
观测器状态的更新可以通过状态方程的离散形式来实现。
4. 估计输出:根据观测器的状态和系统的输入信号,使用输出方程计算观测器的输出信号的估计值。
输出方程的计算可以通过观测器的状态和输入信号进行线性组合得到。
5. 更新观测器状态估计值:将观测器的状态估计值更新为观测器的状态和系统输出信号的估计值之间的误差。
6. 重复步骤3至5,直到达到预设的停止条件。
通过不断重复上述步骤,龙贝格观测器可以逐步优化状态估计值,使其接近真实的系统状态。
同时,龙贝格观测器还可以根据系统的输出进行校正,提高状态估计的准确性。
需要注意的是,龙贝格观测器的性能与状态方程和输出方程的准确性密切相关,对于有较大噪声或不确定性的系统,需要在模型中考虑噪声或不确定性,以提高观测器的鲁棒性。
同时,也需要根据具体应用场景对观测器的采样周期和参数进行选择和调整。
龙贝格积分1. 算法原理采用复化求积公式计算时,为使截断误差不超过ε,需要估计被积函数高阶导数的最大值,从而确定把积分区间[]b a ,分成等长子区间的个数n 。
首先在整个区间[]b a ,上应用梯形公式,算出积分近似值T1;然后将[]b a ,分半,对 应用复化梯形公式算出T2;再将每个小区间分半,一般地,每次总是在前一次的基础上再将小区间分半,然后利用递推公式进行计算,直至相邻两个值之差小于允许误差为止。
实际计算中,常用ε≤-n n T T 2作为判别计算终止的条件。
若满足,则取n T f I 2][≈;否则将区间再分半进行计算,知道满足精度要求为止。
又经过推导可知,∑=-++=ni i i n n x x f h T T 112)2(221,在实际计算中,取kn 2=,则k a b h 2-=,112)1*2(2++--+=+k i i ab i a x x 。
所以,上式可以写为∑=++--+-+=+kk i k k ab i a f a b T T 211122)2)12((2211k开始计算时,取())()(21b f a f ab T +-=龙贝格算法是由递推算法得来的。
由梯形公式得出辛普森公式得出柯特斯公式最后得到龙贝格公式。
根据梯形法的误差公式,积分值n T 的截断误差大致与2h 成正比,因此步长减半后误差将减至四分之一,即有21114n n T T -≈-将上式移项整理,知2211()3n n n T T T -≈-由此可见,只要二分前后两个积分值n T 和2n T 相当接近,就可以保证计算保证结果计算结果2n T 的误差很小,这种直接用计算结果来估计误差的方法称作误差的事后估计法。
按上式,积分值2n T 的误差大致等于21()3n n T T -,如果用这个误差值作为2n T 的一种补偿,可以期望,所得的()222141333n n n n n T T T T T T =+-=-应当是更好的结果。
龙贝格求积算法
龙贝格求积算法(Romberg Integration Algorithm)是用于数
值积分的一种高效的迭代方法。
它通过连续的二分、四分、八分等等
区间的方式,逐渐逼近最终的积分值,从而提高计算的精度。
该算法的基本思想是利用Richardson外推技术,结合复合梯形
法则,逐渐缩小区间并增加采样点数,以得到更精确的积分值。
下面
我们来介绍龙贝格求积算法的步骤:
1. 将积分区间[a, b]进行二分,得到初始的两个子区间;
2. 对每个子区间应用复合梯形公式进行数值积分,可以得到初始的近似积分值;
3. 利用Richardson外推技术,对不同精度的积分值进行线性组合,得到更高精度的积分值;
4. 重复步骤2和3,将积分区间不断地二分,并逐步增加采样点数,直到达到所需的精度要求。
龙贝格求积算法的主要优点是在保持高精度的能够有效减少计算量。
该算法还可以通过预先计算一些常见函数在一些固定的点上的值,以进一步提高计算速度。
总结起来,龙贝格求积算法通过利用复合梯形法则和Richardson 外推技术,逐渐逼近积分值的精确结果。
它是一种高效且精确的数值
积分方法,广泛应用于科学计算和工程领域。
实验二:龙贝格算法一、实验目的1、通过本实验理解数值积分与微分的基本原理2、掌握数值积分中常见的复合求积公式的编程实现3、掌握龙贝格算法的基本思路和迭代步骤二、实验原理三、运行结果三、代码using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication4{public delegate double F(double x);class Program{const double Precision = 0.00000000001;const int MAXRepeat = 10;static double f1(double x){double s=4/(1+x*x );return s;}static double Romberg(double a,double b, F f){int m,n,k;double[] y = new double[MAXRepeat];double h,ep,p,xk,s,q=0;h=b-a;y[0]=h*(f(a)+f(b))/2.0;//计算T`1`(h)=1/2(b-a)(f(a)+f(b));m=1;n=1;ep=Precision+1;while((ep>=Precision)&&(m<MAXRepeat)){p=0.0;for(k=0;k<n;k++){xk = a + (k + 0.5) * h; // n-1p = p + f(xk); //计算∑f(xk+h/2),T} // k=0p = (y[0] + h * p) / 2.0; //T`m`(h/2),变步长梯形求积公式s = 1.0;for (k = 1; k <= m; k++){s = 4.0 * s;// pow(4,m)q = (s * p - y[k - 1]) / (s - 1.0);//[pow(4,m)T`m`(h/2)-T`m`(h)]/[pow(4,m)-1],2m阶牛顿柯斯特公式,即龙贝格公式y[k - 1] = p;p = q;}ep = Math.Abs(q - y[m - 1]);//前后两步计算结果比较求精度m = m + 1;y[m - 1] = q;n = n + n; // 2 4 8 16h = h / 2.0;//二倍分割区间}return q;}static void Main(string[] args){double a, b, result;Console.WriteLine("请输入积分下限:");a = Convert.ToDouble(Console.ReadLine());Console.WriteLine("请输入积分上限:");b = Convert.ToDouble(Console.ReadLine());result = Romberg(a, b, new F(f1));Console.Write("定积分计算结果为:{0}:", result);Console.ReadLine();}}}四、分析本次试验使我认识到了计算机计算能力的强大,通过本次实验对数值积分与微分的基本原理有了深刻理解。
龙贝格观测器离散算法1. 介绍龙贝格观测器(Longberg observer)是一种用于状态估计的离散算法。
它通过测量系统的输出和输入,利用差分方程来估计系统的状态。
该算法广泛应用于控制系统、信号处理和机器学习领域。
龙贝格观测器离散算法的核心思想是通过对系统状态的离散估计,从而实现对系统行为的预测和控制。
该算法基于系统的动态模型和测量值,使用递推方程来更新状态估计值。
2. 算法原理2.1 系统模型龙贝格观测器离散算法的前提是系统模型已知。
系统模型可以表示为以下离散时间方程:x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k) + Du(k)其中,x(k)是系统的状态向量,u(k)是输入向量,y(k)是输出向量,A、B、C和D是系统的参数矩阵。
2.2 离散观测器方程龙贝格观测器的离散方程可以表示为以下形式:x^(k+1) = (A - L*C) * x^(k) + L * y(k)其中,x^(k)是状态估计向量,L是观测器增益矩阵,通过调整观测器增益可以优化状态估计的性能。
2.3 观测器增益矩阵的计算观测器增益矩阵L的计算可以通过最小二乘法或者极小化估计误差的指标来实现。
常用的方法有最小二乘法、极小化误差平方和、极小化误差方差等。
2.4 状态估计误差状态估计误差可以通过以下公式计算:e(k) = x(k) - x^(k)其中,e(k)是状态估计误差向量。
3. 算法步骤龙贝格观测器离散算法的步骤如下:1.初始化状态估计向量x^(0)和观测器增益矩阵L。
2.根据系统模型和测量值,计算观测器增益矩阵L。
3.根据观测器方程,更新状态估计向量x^(k)。
4.根据状态估计向量x^(k)和观测器方程,计算状态估计误差e(k)。
5.重复步骤2至4,直到达到预定的收敛条件。
4. 算法优势和应用4.1 优势龙贝格观测器离散算法具有以下优势:•适用于离散时间系统:该算法适用于离散时间系统,可以对系统的状态进行准确估计。
实验题目2 Romberg 积分法摘要考虑积分()()b aI f f x dx =⎰欲求其近似值,可以采用如下公式: (复化)梯形公式 11[()()]2n ii i hT f x f x-+==+∑2()12b a E h f η-''=-[,]a b η∈ (复化)辛卜生公式 11102[()4()()]6n i i i i hS f x f x f x -++==++∑4(4)()1802b a h E f η-⎛⎫=- ⎪⎝⎭ [,]a b η∈ (复化)柯特斯公式 111042[7()32()12()90n i i i i hC f x f x f x -++==+++∑31432()7()]i i f xf x +++6(6)2()()9454b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ 这里,梯形公式显得算法简单,具有如下递推关系121021()22n n n i i h T T f x -+==+∑因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。
但是,由于梯形公式收敛阶较低,收敛速度缓慢。
所以,如何提高收敛速度,自然是人们极为关心的课题。
为此,记0,k T 为将区间[,]a b 进行2k等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k等份的复化柯特斯积分结果。
根据李查逊(Richardson )外推加速方法,可得到1,11,,0,1,2,40,1,2,41m m k m km k m k T T T m -+-=-⎛⎫=⎪=-⎝⎭可以证明,如果()f x 充分光滑,则有,lim ()m k k T I f →∞= (m 固定),0lim ()m m T I f →∞=这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。