[2]龙贝格积分[数据]
- 格式:docx
- 大小:18.41 KB
- 文档页数:4
龙贝格(Romberg )求积法1.算法理论Romberg 求积方法是以复化梯形公式为基础,应用Richardson 外推法导出的数值求积方法。
由复化梯形公式 )]()(2)([2222b f h a f a f h T +++=可以化为)]()]()([2[212112h a f h b f a f hT +++==)]([21211h a f h T ++一般地,把区间[a,b ]逐次分半k -1次,(k =1,2,……,n)区间长度(步长)为kk m a b h -=,其中mk =2k -1。
记k T =)1(k T由)1(k T =]))12(([21211)1(1∑=---++km j k k k h j a f h T 从而⎰badxx f )(=)1(kT-)(''122k f h a b ξ- (1)按Richardson 外推思想,可将(1)看成关于k h ,误差为)(2k h O 的一个近似公式,因而,复化梯形公式的误差公式为⎰badxx f )(-)1(k T =......4221++kkh K h K =∑∞=12i i k i h K (2)取1+k h =k h 21有 ⎰ba dx x f )(-)1(1+k T =∑∞=+121221i ik ii hK (3)误差为)(2jh O 的误差公式 )(j kT=)1(-j kT+141)1(1)1(------j j k j k T T2。
误差及收敛性分析(1)误差,对复化梯形公式误差估计时,是估计出每个子区间上的误差,然后将n 个子区间上的误差相加作为整个积分区间上的误差。
(2)收敛性,记h x i =∆,由于∑=++=ni i i n x f x f h f T 01))]()([2)(=))()((21101∑∑-==∆+∆n i ni i i i i x x f x x f上面两个累加式都是积分和,由于)(x f 在区间],[b a 上可积可知,只要],[b a 的分划的最大子区间的长度0→λ时,也即∞→n 时,它们的极限都等于积分值)(f I 。
梯形法的递推化和龙贝格算法
梯形法(Trapezoid Rule)是一种数值积分的方法,用于计算函数在给定区间上的定积分。
梯形法的递推化可以通过将区间等分为若干个小梯形来实现。
具体步骤如下:
1. 将给定区间[a, b]分成n个等距的子区间,每个子区间的宽度为h = (b - a) / n。
2. 计算每个子区间的矩形面积(等于底边长度乘以高度),然后将所有子区间的矩形面积相加,得到梯形法的近似积分值。
梯形法的递推公式可以表示为:
I = h/2 * [f(a) + 2*f(a+h) + 2*f(a+2h) + ... + 2*f(a+(n-1)h) + f(b)] 其中,f(x)为要积分的函数。
龙贝格算法(Romberg Integration)是一种数值积分的方法,可以通过多次应用梯形法来逐步提高积分结果的精度。
龙贝格算法的具体步骤如下:
1. 利用梯形法计算区间[a, b]上的第一次近似积分值T(1,1)。
2. 利用递推公式T(m, 1) = 1/2 * [ T(m-1, 1) + h(m-1) *
Sigma(2^(m-2) * f(a + (2k-1) * h(m-1))), k=1 to 2^(m-2)],计算T(m, 1),其中h(m-1)为区间[a, b]的步长。
3. 计算T(m, n) = T(m, n-1) + 1 / (4^(n-1) - 1) * ( T(m, n-1) - T(m-1, n-1) ),其中n > 1,m > n。
4. 重复步骤3,直到达到所需的精度要求。
龙贝格算法通过递归和递推来不断提高积分结果的精度,可以较快地得到比较准确的近似积分值。
龙贝格积分1. 算法原理采用复化求积公式计算时,为使截断误差不超过ε,需要估计被积函数高阶导数的最大值,从而确定把积分区间[]b a ,分成等长子区间的个数n 。
首先在整个区间[]b a ,上应用梯形公式,算出积分近似值T1;然后将[]b a ,分半,对 应用复化梯形公式算出T2;再将每个小区间分半,一般地,每次总是在前一次的基础上再将小区间分半,然后利用递推公式进行计算,直至相邻两个值之差小于允许误差为止。
实际计算中,常用ε≤-n n T T 2作为判别计算终止的条件。
若满足,则取n T f I 2][≈;否则将区间再分半进行计算,知道满足精度要求为止。
又经过推导可知,∑=-++=ni i i n n x x f h T T 112)2(221,在实际计算中,取kn 2=,则k a b h 2-=,112)1*2(2++--+=+k i i ab i a x x 。
所以,上式可以写为∑=++--+-+=+kk i k k ab i a f a b T T 211122)2)12((2211k开始计算时,取())()(21b f a f ab T +-=龙贝格算法是由递推算法得来的。
由梯形公式得出辛普森公式得出柯特斯公式最后得到龙贝格公式。
根据梯形法的误差公式,积分值n T 的截断误差大致与2h 成正比,因此步长减半后误差将减至四分之一,即有21114n n T T -≈-将上式移项整理,知2211()3n n n T T T -≈-由此可见,只要二分前后两个积分值n T 和2n T 相当接近,就可以保证计算保证结果计算结果2n T 的误差很小,这种直接用计算结果来估计误差的方法称作误差的事后估计法。
按上式,积分值2n T 的误差大致等于21()3n n T T -,如果用这个误差值作为2n T 的一种补偿,可以期望,所得的()222141333n n n n n T T T T T T =+-=-应当是更好的结果。
龙贝格积分 python龙贝格积分 python一、什么是龙贝格积分?龙贝格积分(Romberg integration)是一种数值积分方法,它是对梯形法的递推加速处理。
梯形法是一种比较简单的数值积分方法,但它的精度不高,而且需要很多次计算。
龙贝格积分通过递推计算,可以大大提高计算精度,并且减少计算次数。
二、如何实现龙贝格积分?在 Python 中实现龙贝格积分可以使用以下代码:```pythondef romberg(f, a, b, n):"""Calculate the Romberg Integration of f(x) from a to b with n iterations"""R = [[0] * (n+1) for _ in range(n+1)]h = b - aR[0][0] = 0.5 * h * (f(a) + f(b))for i in range(1, n+1):h = 0.5 * hsum = 0for k in range(1, 2**i, 2):sum += f(a + k*h)R[i][0] = 0.5 * R[i-1][0] + sum*hfor j in range(1, i+1):R[i][j] = (4**j*R[i][j-1] - R[i-1][j-1]) / (4**j - 1)return R[n][n]```三、代码解析1. 定义函数 romberg(f, a, b, n),其中 f 为被积函数,a 和 b 分别为积分上下限,n 为迭代次数。
2. 创建一个n+1 行n+1 列的二维数组R,用于存储递推计算的结果。
3. 计算初始值 R[0][0],即使用梯形法计算第一次迭代的结果。
4. 进行 n 次迭代,每次将步长 h 减半,并且计算新的递推值。
具体过程如下:a. 计算当前步长 h。
实验题目2 Romberg 积分法摘要考虑积分()()b aI f f x dx =⎰欲求其近似值,可以采用如下公式: (复化)梯形公式 11[()()]2n ii i hT f x f x-+==+∑2()12b a E h f η-''=-[,]a b η∈ (复化)辛卜生公式 11102[()4()()]6n i i i i hS f x f x f x -++==++∑4(4)()1802b a h E f η-⎛⎫=- ⎪⎝⎭ [,]a b η∈ (复化)柯特斯公式 111042[7()32()12()90n i i i i hC f x f x f x -++==+++∑31432()7()]i i f xf x +++6(6)2()()9454b a h E f η-⎛⎫=- ⎪⎝⎭[,]a b η∈ 这里,梯形公式显得算法简单,具有如下递推关系121021()22n n n i i h T T f x -+==+∑因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。
但是,由于梯形公式收敛阶较低,收敛速度缓慢。
所以,如何提高收敛速度,自然是人们极为关心的课题。
为此,记0,k T 为将区间[,]a b 进行2k等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k等份的复化柯特斯积分结果。
根据李查逊(Richardson )外推加速方法,可得到1,11,,0,1,2,40,1,2,41m m k m km k m k T T T m -+-=-⎛⎫=⎪=-⎝⎭可以证明,如果()f x 充分光滑,则有,lim ()m k k T I f →∞= (m 固定),0lim ()m m T I f →∞=这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。