聚丙烯改性技术的研究进展
- 格式:doc
- 大小:55.50 KB
- 文档页数:15
POE与EPDM对聚丙烯增韧改性研究聚丙烯 (Polypropylene, PP) 是一种常见的热塑性聚合物,具有良好的力学性能和化学稳定性。
然而,其脆性和低冲击强度限制了其在一些应用领域的使用。
因此,为了提高聚丙烯的韧性和抗冲击性能,需要进行增韧改性。
本文将探讨聚丙烯增韧改性的两种常用方法:POE (Polyolefin elastomer) 和 EPDM (Ethylene-propylene-diene terpolymer)。
POE是一种弹性体,其结构中含有少量的丙烯,在聚丙烯中以分散相形式存在。
POE与聚丙烯之间的相容性较好,可以有效提高聚丙烯的抗冲击性能。
研究表明,随着聚丙烯中POE含量的增加,聚丙烯的拉伸韧性和冲击强度都会显著提高。
这是因为POE的弹性性质可以吸收冲击能量,从而有效减少聚丙烯的脆性。
EPDM 是一种橡胶弹性体,其结构中含有乙烯 (Ethylene)、丙烯(Propylene) 和二烯 (Diene)。
EPDM 能够与聚丙烯形成良好的相容性,并且可以在聚丙烯中有效分散。
EPDM 可以提高聚丙烯的拉伸韧性、冲击强度和耐热性。
研究表明,聚丙烯中 EPDM 的含量增加,可以显著提高聚丙烯的冲击强度和抗拉伸性能。
这是因为 EPDM 的弹性性能可以增加聚丙烯的延展性,从而提高聚丙烯的韧性。
POE和EPDM的增韧效果取决于它们与聚丙烯的相容性和分散性。
实验研究发现,聚丙烯中POE和EPDM的颗粒分散均匀,并且与聚丙烯形成良好的相容性,可以显著提高聚丙烯的韧性和抗冲击性能。
此外,研究还发现,POE和EPDM的分子量对聚丙烯的增韧效果也有一定影响。
较低分子量的POE和EPDM往往能够更好地分散在聚丙烯中,并且可以提供更好的增韧效果。
总之,POE和EPDM都是常用的聚丙烯增韧材料。
它们能够与聚丙烯形成良好的相容性,提高聚丙烯的韧性和抗冲击性能。
选择适当的POE或EPDM材料,并控制其含量和分子量,可以获得理想的聚丙烯增韧改性效果。
聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。
然而,聚丙烯在某些方面的性能还有待改善。
改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。
本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。
聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。
通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。
常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。
2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。
常见的共混改性方法有物理共混和化学共混两种。
•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。
物理共混可以改善聚丙烯的强度、韧性和耐热性。
•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。
化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。
3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。
•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。
•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。
聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。
1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。
聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。
聚丙烯酸酯乳液聚合与改性优化研究摘要:聚丙烯酸乳液聚合的整个流程主要为分散、乳胶粒生成、乳胶粒长大以及聚合等环节。
本文对聚丙烯酸酯乳液聚合过程进行了分析,对聚丙烯酸酯乳液聚合功能性单体改性于复合改性展开了研究,以供参考。
关键词:聚丙烯酸酯乳液聚合;功能性单体改性;复合改性1.聚丙烯酸酯乳液聚合1.1 乳液聚合的过程聚丙烯酸酯乳液聚合的组成主要分为丙烯酸酯类单体、引发剂、乳化剂以及水(分散介质)。
乳化剂中含有亲油的非极性基团和亲水的极性基团,使得丙烯酸酯类单体在水中较均匀地分散,形成小胶束,从而在引发剂的作用下进行自由基聚合,完成乳液聚合。
根据时间-转化率的关系,将乳液聚合过程分为四个阶段:分散阶段、乳胶粒生成阶段、乳胶粒长大阶段以及聚合反应完成阶段。
分散阶段也就是预备阶段。
在搅拌过程中,乳化剂使聚合单体分布在乳化剂分子稳定的单体液滴内、胶束内以及有着极少量的部分在水相中。
在聚合单体、乳化剂和水混合均匀时,便达到了单体在单体珠滴、胶束以及水相之间的动态平衡。
在分散阶段后期,加入引发剂并升高温度,引发剂在水相中生成自由基,自由基先和体系中少量氧或单体中的阻聚剂反应,这个过程称为诱导期。
诱导期结束后,自由基引发聚合反应,生成乳胶粒,该过程称为乳胶粒生成阶段,乳胶粒生成的机理包括低聚物成核机理和胶束成核机理。
在乳胶粒长大阶段中,自由基由水相进入乳胶粒,并引发聚合,乳胶粒便不断长大。
理论上,聚合体系中的数目以及乳胶粒内的单体浓度不变,单体珠滴中的单体输送到乳胶粒,直到单体珠滴消失,这时反应只能消耗乳胶粒内的单体,随着单体浓度降低,反应速率不断下降。
但是现实中,由于存在体积效应,在乳胶粒长大阶段后期出现加速现象。
1.2 新型乳液聚合工艺1.2.1 无皂乳液聚合无皂乳液聚合过程中完全不加或只加入微量乳化剂,其无残留乳化剂,产物的耐水性、电学性能、光泽度等较好。
无皂乳液聚合主要是将丙烯酸酯类单体自身的亲水性链段或基团发挥出乳化剂的作用,从而反应稳定进行。
聚丙烯改性技术的研究进展五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。
与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。
但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。
为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。
1 橡胶增韧PP橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。
由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。
通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。
传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。
1.1 PP/乙丙橡胶共混体系PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。
由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。
李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。
通常情况下,EPR的增韧效果优于EPDM。
通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。
刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。
结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差异对力学性能不起作用。
若在PP与橡胶的体系中加入过氧化物和助剂,可使其形成动态硫化共混。
达到理想共混效果,一是采用反应挤出技术,二是选择合适的过氧化物和助剂体系。
由于动态硫化过程既有橡胶组分的交联,又有少量的橡胶被接技到PP主链上,使其在PP基体中有较好的分散性,两聚合物界面也能达到较大的粘接强度。
石彪等采用二苯甲烷型双马来酰亚胺(BMI)作为助交联剂,过氧化二异丙苯(DCP)为交联引发剂,在开炼机上进行硫化实验,以探讨EPDM动态硫化增韧PP的力学性能。
实验表明:当硫化体系为0y用MI=0.20:1,硫化温度为175—180℃,硫化时间为14min时,冲击强度最高,可达157kJ/m。
此时材料的拉伸强度(39.0MPa)、断裂伸长率(451%)达到最高值,而永久变形率(13.6%)最低。
由此可见,经动态硫化处理的EPDM比单纯的EPDM的增韧效果好,可以有效地提高PP的韧性。
顾方明等研究了在PP/EPDM共混物中添加HDPE和多种加工助剂对材料性能的影响。
结果表明:PP在过氧化物存在下可控降解是提高共混物流动性的有效手段,但抗冲击韧性显著下降。
加入HDPE和加工润滑剂可适当调节共混物的流动性,而采用可控降解和动态交联结合的技术,可获得高韧性、高流动性增韧PP。
1.2 PP/顺丁橡胶共混体系王力用简单共混和动态硫化共混两种工艺制取PP/BR共混物,分别测定了两种共混物在室温和低温下的冲击强度。
结果表明,动态硫化法可减少PP球晶尺寸,增加PP球晶分布的均匀性,改善共混物的形态结构,增加两相的相容性,有效提高了共混物的低温冲击强度。
1.3 PP/硫化胶粉共混体系采用硫化粉末橡胶对PP进行共混增韧改性,不但提高了PP共混材料的冲击性能,而且降低了成本。
最近,陶国良等对硫化胶粉/PP共混物进行了研究,采用的工艺路线是:胶粉处理—原料配合—双辊混炼—粉碎—注射试样—性能测试,得出结论:(1)硫化胶粉能改善PP材料的抗冲击性能,且胶粉粒径越小改善效果越好,但会使共混体系的拉伸强度赂有下降。
胶粉含量为5%—15%时,共混体系的综合性能较好;(2)在硫化胶粉/PP体系中添加偶联剂,有利于提高共混物的力学性能和热变形温度;(3)硫化胶粉含量增加会使共混体系的流动性能下降,但胶粉粒径越小越有利于减少共混物的流动阻力。
如果硫化胶粉/PP共混材料能得到推广应用,可为我国废旧轮胎和橡胶制品的回收利用和环境保护作出贡献。
1.4 PP/杜仲胶共混体系杜仲胶的主要成分是反式—1,4—聚异戊二烯(TPI),是天然橡胶的同分异构体。
由于TPI有较强的结晶性(Tm=70℃),常温下与塑料相似,为硬质材料,因而难以被人们认识和应用。
我国率先发现TPI硫化为弹性体的硫化交联体系,而且其某些力学性能优于天然橡胶。
彭少贤等发现,未交联硬质的TPI能利用通用的塑料机械进行破碎、挤出、造粒,与PP共混、动态硫化后,有较好增韧效果。
TPI在PP中以塑料态加工,以橡胶态分散,能有效解决生产中橡胶与塑料共混难以加工的实际问题,作为塑料的增韧改性剂具有良好的前景。
实验表明:(1)在评I硫化体系中,随着交联剂用量上升,交联度也上升。
当加入3份硫磺硫化的评I时,实现了从塑料态向橡胶态的转变;(2)中等硫化度的TPI在PP中起到了橡胶粒子增韧的作用,将其加入PP约15%时,其冲击强度提高了2倍;(3)在PP/EPDM共混体系中加入6%的TPI,能将冲击强度提高30%(44.3kJ/m2)。
2 热塑性弹柱体增韧PPSBS是由丁二烯、苯乙烯组成的具有三维层状结构的嵌段共聚物,该弹性体兼具硫化橡胶和热塑性塑料的性能。
SBS与PP共棍能显著提高PP高低温冲击强度。
如金陵石化公司塑料厂采用高速混合—单螺杆挤出造粒共混工艺,进行了PP/SBS和PP/SBS/共混研究。
结果证明:PP/SBS共混物的冲击强度随SBS 用量的增加而增大,其他机械性能则随SBS用量的增加而降低;CaC03的加入可提高刚性及其它机械性能,改善制品的成型收缩率。
郦华兴等采用SBS作为相容剂、HDPE为补强相容剂,对PP进行改性。
研究表明,PP/SBS没有PP/SBS/HDPE 的效果好。
原因是二元共混物中球晶的分散度和均匀性差,SBS在基体中的分散效果不佳;而在三元共混物中,由于HDPE的加入,使共混体系的界面相互渗透,促使SBS颗粒表面张力和破碎率降低,颗粒细化,分散更均匀,显著增加了SBS分散相的有效体积。
同时,MDPE的加入使PP球晶细化,从而提高了PP/SBS/HDPE三元共混物的综合性能。
结果还表明,当PP/SBS/HDPE以适量配比采用二价共混(即先作成母料)工艺时,共混物分散均匀,其冲击强度比纯PP 提高了7.5倍,且具有良好的冲击韧性和成型加工性能。
3 茂金属聚烯烃弹性体增韧PP3.1 PP/POE共混体系新型的可用于增韧的POE、POP是茂金属催化的乙烯—辛烯或乙烯—丁烯共聚物,这些弹性体的特点是相对分子质量分布窄、密度低、各项性能均衡、易于加工,可赋予制品韧性、高透明性和高流动性。
与应用较广泛的EPDM相比,POE的内聚能低,无不饱和双键,耐候性更好,其表观切变粘度对温度的依赖性更接近PP,故相容性较好,加工温度范围较宽。
由于POE既具有橡胶的弹性又具有塑料的刚性,与PP共混时更易得到较小的弹性体粒径和较窄的粒径分布,增韧PP的同时能保持较高的模量、拉伸强度及良好的加工流动性,因而增韧效果更好。
李蕴能等将POE作为增韧剂分别加入到共聚PP和均聚PP中,发现随着POE 用量的增加,两种体系的冲击韧性和伸长率逐步升高,共聚PP体系变化更为明显。
当增韧剂含量在20%时,材料呈现脆、韧性转变,即冲击强度由85J/m增至450J/m;当增韧剂为30%时,缺口强度高达66U/m。
冯予星等也研究了POE对PP冲击韧性的影响,指出,POE的加入使PP常温缺口冲击强度增加,当用量超过一定份数后,增韧效果显著。
与PP心EPDM共混物相比,PP/POE共混物的冲击强度更高,即使POE用量很少,也能使PP的增韧效果显著。
3.2 PP/EOC共混体系近年来,茂金属催化的聚烯烃弹性体已逐步商业化,其中典型代表是乙烯—辛烯共聚物(EOC)。
它作为PP的抗冲击改性剂,具有传统弹性体无法比拟的优点。
张玲等利用原位技术聚合的三种具有不同含量的EOC作为PP的增韧改性剂,考察了在相同加工条件和共混比例下,粘度比和界面相互作用对PP/EOC共混物的形态和性能的影响。
结果表明:(1)EOC的加入使PP的拉伸、弯曲强度和模量均有所下降,材料的冲击性能显著提高;(2)随着EOC中辛烯含量的增加,PP/EOC的界面粘结能(Ga)增大,共混物的冲击强度由56.8J/m2增至60.1 J/m2,是纯PP的9倍多。
3.3 PP/mPE弹性体共混体系茂金属催化剂在聚烯烃工业的应用导致了大量新的聚烯烃材料的问世,这些材料的性能是用传统的聚合方法无法得到的。
邱佳学等对mPE弹性体增韧改性PP进行了研究。
PP的Tg高于室温,具有较高的刚性和拉伸强度,但伸长率很小,故低温冲击性能和断裂韧性差。
而d)E弹性体具有非常低的Tg(最低接近—40℃),且伸长率很大,可改善PP的低温冲击性能和断裂韧性。
同时mPE弹性体的熔融指数比PP大得多,与PP共混可改善PP的流动性。
他们还研究了不同牌号mPE弹性体对PP的增韧改性效果的影响。
在PP中加入mPE弹性体后,PP的伸长率得到不同程度的提高,低温冲击强度得到显著改善。
美国陶氏化学公司生产的mPE弹性体EG8480能大幅度提高PP的伸长率,但共混物的冲击强度仅提高了l倍多,这与EG8480的Tg较高有关;E438842对PP有优良的增韧效果,共混物的低温缺口冲击强度是纯PP的20多倍,且共混物仍保持较高的拉伸强度。
邱佳学等还对茂金属聚乙烯增韧改性PP的力学性能进行了研究,认为:(1)mPE的增韧效果极大的取决于基体中mPE的含量,用量过高会引起共混物模量和强度的下降;(2与传统的EPDM和SEBS(苯乙烯—乙烯—丁二烯—苯乙烯嵌段共聚物)相比,mPE对PP的增韧效果更佳,少量的mPE就可使PP获得高的低温冲击强度。
4 无机刚性粒子增韧PP利用橡胶或弹性体虽可显著增加PP的韧性,但同时降低了共混物的模量、强度和热变形温度。
因此,国外从上世纪80年代起,出现了以刚性粒子代替弹性体或橡胶增韧聚合物的研究。
文献报道的无机粒子包括碳酸钙、滑石粉、高岭土、云母、硅灰石、硫酸钡等。