光通过单轴晶体时的双折射现象
- 格式:ppt
- 大小:1.88 MB
- 文档页数:53
光的双折射现象理论解释与实验探究光的双折射是光线在晶体中传播时所表现出的一种非常有趣的现象。
在晶体中,光线被分成两束,分别按照不同速度传播和折射,产生出两束方向不同的光线。
这种现象可以通过理论解释和实验来探究。
首先,理论解释方面,我们需要了解晶体的结构和光的传播机制。
晶体由大量的晶格构成,其中每个晶格都具有相同的结构单元。
光的传播是通过光子在晶格之间进行散射来实现的。
当光传播方向与晶格中的原子或分子排列方向一致时,光子会与晶格产生相互作用,导致光传播速度减慢。
而当光传播方向与晶格排列方向垂直时,光子则不与晶格相互作用,速度维持不变。
基于这个理论,我们可以解释为什么光在经过晶体时会出现双折射现象。
当光线射入晶体时,它会与晶格中的原子或分子相互作用,导致光线被分成两束,其中一束传播速度变慢,另一束传播速度保持不变。
这导致光线的传播方向发生改变,从而使得光线呈现出双折射现象。
为了进一步验证这个理论,我们可以进行实验探究。
实验所需材料包括晶体样品(如方解石)和光源(如激光器或白光源)。
首先,将晶体样品固定在光路上,并确保光线垂直入射到晶体表面。
然后,通过调整光源和观察屏的位置,我们可以观察到晶体中传播出的两束光线。
这两束光线的方向和强度可以用调整观察屏上的位置和观察角度来观察和测量。
实验结果将验证理论解释,并提供更多关于光的双折射现象的信息。
例如,我们可以测量两束光线的入射角和折射角,以确定双折射的程度。
我们还可以调整晶体样品的厚度和方向,观察和比较不同条件下的双折射效应。
除了理论解释和实验探究,光的双折射现象还具有广泛的应用。
例如,在光学仪器和光纤通信中,双折射现象被用于控制和调节光的传播方向和速度。
通过利用晶体的双折射特性,我们可以设计出各种光学器件和系统,提高光学设备和通信网络的性能。
总的来说,光的双折射现象是光传播过程中的一种重要现象,通过理论解释和实验探究可以更好地理解和应用这一现象。
通过深入研究光的双折射现象,我们可以为光学科学和技术的发展提供新的思路和解决方案,推动光学领域的进步和创新。
作图法分析光波在两个单轴晶体分界面上的双反射和双折射宋哲;于伟行;张琳;李琳;吴晶;丁一【摘要】通过几何作图法,分析了光轴取向任意时,光波在两个单轴晶体分界面上的双反射和双折射.考虑到入射光波、反射光波、折射光波在界面上相位相等和晶体折射率面的定义,采用斯涅尔作图法,直接在图上得到了两条反射光波和两条折射光波.根据晶体的光学各向异性,进一步讨论了各光波对应的光线方向和振动方向,并通过几何分析,给出了各反射光波、折射光波、反射光线和折射光线位置的一般表达式.斯涅尔作图法简单直观,可以直接获得光波的方向,结果具有普遍性.【期刊名称】《大学物理》【年(卷),期】2017(036)010【总页数】5页(P16-20)【关键词】晶体光学;双反射;双折射;折射率面;相位【作者】宋哲;于伟行;张琳;李琳;吴晶;丁一【作者单位】辽宁师范大学物理与电子技术学院,辽宁大连 116029;中国科学院空间激光通信及检验技术重点实验室,上海201800;辽宁师范大学物理与电子技术学院,辽宁大连 116029;辽宁师范大学物理与电子技术学院,辽宁大连 116029;辽宁师范大学物理与电子技术学院,辽宁大连 116029;辽宁师范大学物理与电子技术学院,辽宁大连 116029;辽宁师范大学物理与电子技术学院,辽宁大连 116029【正文语种】中文【中图分类】O435.1光学各向异性是晶体的主要物理性质之一,双折射现象是其重要表现.利用晶体的双折射效应可以设计出各种晶体光学器件,其中有许多是由多块光轴取向不同的晶体级联构成的,如渥拉斯顿棱镜、偏振分光镜、波片、光开关[1]、光互连网络[2,3]、光桥接器[4,5]、偏振干涉滤波器[6]等.在设计器件时,光波在晶体界面上的反射和折射问题是必须要考虑的.人们采用不同方法对光波在各向同性介质与单轴晶体分界面上的双折射和双反射进行了大量研究,如:光轴取垂直入射面和在入射面内两种特殊方向情况下,光波从各向同性介质入射到单轴晶体时晶体上表面的双折射和光波从单轴晶体入射到各向同性介质时晶体下表面的双反射[7-11];光轴取向任意时,光波在单轴晶体上表面的双折射[12-17]和单轴晶体下表面的双反射[12,16,18-20].由于晶体级联时多采用各向同性介质胶合的方式,所以对光波在两个单轴晶体分界面上的双折射和双反射研究得不多[21-25].但在对器件质量要求较高的场合,晶体之间可以通过光胶工艺直接级联,此外,液晶之间[26]、各向异性薄膜之间[27]可以直接级联,因此,研究光波在两个晶体分界面上的双反射和双折射是有必要的.本研究小组对单轴晶体的双折射问题进行了系列研究,本文在前期工作基础上,利用各光波在界面上相位相等的条件和晶体的折射率面定义,通过作图来分析光轴取向任意时光波在两个单轴晶体分界面上的双折射和双反射.首先建立晶体界面与法线的直角坐标系xyz,选取两个晶体的分界面为xy面,界面的法线为z轴,z>0为晶体a,z<0为晶体b,假设xz面是入射面(即入射光波与界面法线组成的面),则x轴为入射面与界面的交线,如图1所示.x1ax2ax3a组成晶体a的主轴坐标系,x1bx2bx3b组成晶体b的主轴坐标系.令晶体a的光轴x3a (ca)轴与z轴的夹角为φa,0<φa<π,x3a轴与z轴组成的面为晶体a的主截面Ⅰ,其与入射面的夹角为δa(即x3a轴在界面上的投影与x轴之间的夹角),0<δa<2π,x1a垂直于主截面Ⅰ,并在界面xy内,x2a在主截面Ⅰ内.令晶体b的光轴x3b(cb)轴与z轴的夹角为φb,0<φb<π,x3b轴与z轴组成的面为晶体b的主截面Ⅱ,其与入射面的夹角为δb(即x3b轴在界面上投影与x轴之间的夹角),0<δb<2π,x1b轴垂直于主截面Ⅱ,并在界面xy内,x2b轴在主截面Ⅱ内. 根据入射光波、反射光波、折射光波在界面上相位相等的条件和晶体折射率面定义,可以通过斯涅尔作图法来分析光波在两个单轴晶体分界面上的双反射和双折射.单轴晶体的折射率面是个双层面,一个是球面,代表寻常光(o光)的折射率面,定义为矢径r=noko,ko是晶体中o光波法线ko的单位矢量,no是o光的主折射率;另一个是旋转椭球面,代表非寻常光(e光)的折射率面,定义为矢径r=ne(θ)ke,ke是晶体中e光波法线ke的单位矢量,ne(θ)是e光沿ke方向的折射率(说明e光折射率是随传输方向而变化的),θ是ke与光轴的夹角,两个面在光轴处相切.在图1所示的情况下,两个单轴晶体中,球面在入射面上的中心截面是圆面Σ1a和Σ1b,半径分别为noa和nob,noa和nob分别是o光在晶体a和晶体b中的主折射率;椭球面在入射面上的中心截面是椭圆面Σ2a和Σ2b,长、短半轴分别为、nea和、neb,其中长轴方向分别平行于光轴x3a和x3b在入射面内的投影和,他们与x轴的夹角分别为βa和βb角,长轴的长度是e光沿和方向传输时的折射率和,设短轴方向分别为和,其长度是e光沿和方向传输时的折射率,等于e光在晶体a和晶体b中的主折射率nea和neb,如图2所示,图中Σ1a、Σ2a和Σ1b、Σ2b只画出晶体a和晶体b中部分.根据单轴晶体折射率面方程可以得到Σ1a、Σ2a和Σ1b、Σ2b的方程:+=1==其中θca和θcb分别是与晶体a光轴x3a的夹角和与晶体b光轴x3b的夹角.根据文献[17]和[20]的方法可求得:在图1所示坐标系下,当一束o光波ko1以θ1角从晶体a入射到晶体b时,在分界面上将发生双反射和双折射.由各光波在界面上相位相等的条件可得:nobsin θ2ook=neb(θkoecb)sin θ2oek其中是o光光波反射角,nea(θkoeca)为e光反射光波方向的折射率,θkoeca是与光轴ca的夹角,为e光光波反射角,θ2ook为o光光波折射角,neb(θkoecb)为e光折射光波koe2方向的折射率,θkoecb是koe2与光轴cb的夹角,θ2oek为e光光波折射角.根据晶体折射率面定义可知,任一矢径在x轴上的投影即为沿该方向传输的光波的相位.设入射o光波ko1交折射率面Σ1a于P点,作PA垂直于x轴,交x轴于A,则OA=noasin θ1.在x轴上取OB=OA,过B点作x轴的垂线,分别交Σ1a于C,交Σ2a于D,交Σ1b于E,交Σ2b于F,则OC即是o光反射光波方向,OD是e光反射光波方向,OE是o光折射光波koo2方向,OF是e光折射光波koe2方向,如图2所示.由式(11)可得o光的光波反射角和光波折射角,分别为:e光的光波反射角和光波折射角可以利用图2通过几何关系来求得,分别为:cot =cot θ2oek=式(12)—式(15)确定了o光反射光波和折射光波koo2的方向,e光反射光波和折射光波koe2的方向,他们都在入射面内.o光的光线方向与光波方向是一致的,所以o光入射光线to1、反射光线、折射光线too2分别与入射光波ko1、反射光波、折射光波koo2的方向平行,均在入射面内,但振动方向与光轴有关,他们的振动方向是不同的,入射光的振动方向垂直于光轴ca与入射光波ko1组成的面,反射光的振动方向垂直于光轴ca与反射光波组成的面,折射光的振动方向垂直于光轴cb与折射光波koo2组成的面.e光的光线方向与光波方向之间存在离散角,并与光轴取向有关,一般不在入射面内,且不共面,振动方向也不同.e光反射光线在光轴ca与反射光波组成的面内,与反射光波的离散角为根据几何关系可得:将式(17)代入式(16)可以得到反射光线的位置:为负值,表示在远离光轴一侧;为正值,表示在与光轴之间.振动方向在该面内,并垂直于.e光折射光线toe2在光轴cb与折射光波koe2组成的面内,与折射光波koe2的离散角αoe2为同理由式(18)和式(19)得到折射光线的位置.振动方向在该面内,垂直于koe2.利用各矢量之间的几何关系还可以求出e光的光线反射角和光线折射角θ2oet:在图1坐标系下,当一束e光波ke1以θ1角从晶体a入射到晶体b时,在界面上也将发生双反射和双折射.根据各光波在界面上相位相等的条件,有:nea(θk1ca)sin θ1= noasin =nea(θkeeca)sin =nobsin θ2eok=neb(θkeecb)sin θ2eek其中nea(θk1ca)为e光入射光波方向的折射率,θk1ca是e光入射光波与光轴ca的夹角:是o光光波反射角,nea(θkeeca)为e光反射光波方向的折射率,θkeeca是与光轴ca的夹角,为e光光波反射角,θ2eok为o光光波折射角,neb(θkeecb)为e 光折射光波kee2方向的折射率,θkeecb是kee2与光轴cb的夹角,θ2e ek为e 光光波折射角.设入射e光波ke1交折射率面Σ2a于P′点,作P′A′垂直于x轴,交x轴于A′,则OA′=nea(θk1ca)sin θ1.在x轴上取OB′=OA′,过B′点作x轴的垂线,分别交Σ1a于C′,交Σ2a于D′,交Σ1b于E′,交Σ2b于F′,则OC′即是o 光反射光波方向,OD′是e光反射光波方向,OE′是o光折射光波keo2方向,OF′是e光折射光波kee2方向,如图2所示.由式(22)可得o光的光波反射角和光波折射角,分别为:e光的光波反射角和光波折射角可以利用图2通过几何关系来求得,分别为:cot =式(25)—式(28)确定了o光反射光波和折射光波keo2的方向,e光反射光波和折射光波kee2的方向,他们都在入射面内,但e光的光线也是不在入射面内,且不共面,他们的振动方向也是不同的.o光反射光线和折射光线teo2分别与反射光波和折射光波keo2的方向平行,均在入射面内,反射光的振动方向垂直于光轴ca 与反射光波组成的面,折射光的振动方向垂直于光轴cb与折射光波keo2组成的面.e光入射光线te1在光轴ca与入射光波ke1组成的面内,与入射光波ke1的离散角αe1为:振动方向在该面内,垂直于ke1,由式(24)和式(29)可得到入射光线的位置.e光反射光线在光轴ca与反射光波组成的面内,与反射光波的离散角为:cos θkeeca=sin sin φacos δa+cos cos φa振动方向在该面内,垂直于,由式(30)和式(31)可得到反射光线的位置.e光折射光线tee2在光轴cb与折射光波kee2组成的面内,与折射光波kee2的离散角αee2为:cos θkeecb=sin θ2eeksin φbcos δb-cos θ2eekcos φb振动方向在该面内,垂直于kee2,由式(32)和式(33)可得到折射光线的位置.同样,根据几何关系可以求出e光光线入射角θ1et、光线反射角和光线折射角θ2eet:本文根据晶体折射率面的定义和各光波在界面上相位相等的条件,利用斯涅尔作图法,分析了光轴取向任意时,光波在两个单轴晶体分界面上的双反射与双折射情况.通过几何作图,在图中直接获得了反射光波和折射光波的方向.再根据晶体的光学各向异性,讨论了各光波对应的光线方向和振动方向,根据光轴、光波、光线等各矢量的几何关系,确定了反射光线和折射光线的位置,并给出光波反射角、光波折射角、光线反射角、光线折射角、光波与光线之间离散角的一般表达式,该结果具有普遍性,能够为分析光波在晶体中的传播路径和利用晶体设计光学器件提供理论依据.【相关文献】[1] Mendlovic D, Leibner B, Cohen N. Multistage optical system for broadcasting and switching information [J]. Appl Opt,1999, 38(29):6103-6110.[2] Wang N, Yin Y, Qian J, et al. Compact soild-state optical multi-stage network [J]. Intern J of Optoelectronics. 1996, 10(3):223-229.[3] Song Zhe, Liu Liren, Liu De’an, et al. Packagable free-space optical crossbar network based on bypass-exchange switch [J]. Optik, 2003, 114(11):491-496.[4] Smutny B, Kaempfner H, Muehlnikel G, et al. 5.6Gbps optical intersatellite communication link [J]. SPIE, 2009, 7199:719906-1.[5] 侯培培,周煜,职亚楠,等.晶体双折射自由空间2×4 90°光学桥接器[J].光学学报,2010,30(12):3413-3418.[6] 周煜,刘立人,张娟,等.Solc型双折射滤波器离轴消光比的研究[J].光学学报,2003,23(2):159-163.[7] Yariv A, Yeh P. Optical waves in crystals[M]. New York:John Wiley & Sons, 1984:121-154.[8] 蒋民华.晶体物理[M].济南:山东科学技术出版社,1980:258-271.[9] Avendano-Alejo Maximino, Stavroudis O N. Huygen’s principle and rays in uniaxial anisotropic media. I. Crystal axis normal to refracting surface [J]. J Opt Soc Am A, 2002, 19(8):1669-1673.[10] Ren Haixia, Liu Liren, Song Zhe, et al. Double refraction and reflection of sequential interfaces in a crystal and application to integration of 1×N optical switch [J]. J Mod Opt, 2003, 50(14):2231-2242.[11] 宋哲,刘立人,周煜,等.非常偏振光在单轴晶体表面的反射-透射研究[J].光学学报,2004,24(12):1701-1704.[12] Beyerle G, McDermid I S. Ray-tracing formulas for refraction and internal reflection in uniaxial crystals [J]. Appl Opt, 1998, 37( 34):7947-7953.[13] Stamnes J J, Dhavalan V. Double refraction of a Gaussian beam into a uniaxial crystal [J]. J Opt Soc Am A, 2012, 29(4):486-497.[14] Cojocaru E. Direction cosines and vectorial relations for extraordinary-wave propagation in uniaxial media [J]. Appl Opt, 1997, 36(1):302-306.[15] Liang Quanting. Simple ray tracing formulas for uniaxial optical crystals [J].Appl Opt, 1990, 29(7):1008-1010.[16] Ren Haixia, Liu Liren, Liu De’an, et al. Double refraction and reflection of sequentialcrystal interfaces with arbitrary orientation of the optic axis and application to optimum design [J]. J Mod Opt, 2005, 52(4):529-539.[17] 宋哲,郝林岗,吴宁,等.光轴取向任意时单轴晶体界面上的双折射[J].辽宁师范大学学报,2013,36(3):335-339.[18] 熊平凡.光在单轴晶体内表面上的反射[J].大学物理,2000,19(4):29-31.[19] 胡树基.再论光在单轴晶体内表面上的反射[J].杭州师范学院学报,2002,1 (3):67-70.[20] 宋哲,郝林岗,吴宁,等.光轴取向任意时单轴晶体内表面上的双反射[J].辽宁师范大学学报,2013,36(2):168-173.[21] Stamnes J J, Sherman G C. Reflection and refraction of an arbitrary wave at a plane interface separating two uniaxial crystals [J]. J Opt Soc Am, 1977, 67:683-695.[22] McClain S C, Hillman L W, Chipman R A. Polarization ray tracting in anisotropic optically active media. I. Algorithms [J]. J Opt Soc Am A, 1993, 10(11):2371-2382.[23] 胡树基.光轴任意取向的单轴晶体间光的传播[J].首都师范大学学报,2002,23(4):31-34.[24] 许丽萍.光在两单轴晶体分界面的反射和透射系数[J].大学物理,2000,19(12):13-16.[25] 裴芳芳,陈西园.光在两单轴晶体间界面的反射和透射[J].光学技术,2009,35(5):745-750.[26] Yu H F, Kwok H S. Comparison of extended Jones matrices for twisted nematic liquid crystal displays at oblique angles of incidence [J]. J Opt Soc Am, 1999, 16(11):2772-2780.[27] 胡树基.光轴任意取向的单轴晶体薄膜间的“菲涅耳公式”[J].光学仪器,2002,24(4-5):55-58.。
o光:双折射的两束折射光中,一束遵循折射定律,传播速度v o沿各个方向都相同,折射率n o=si n i/si n t o=c/v o=常量,称作寻常光,记为o光。
e光:通常不遵循折射定律,折射方向通常在入射面之外,传播速度随传播方向而改变,si n i/si n t e≠常量,称作非寻常光,记为e光o光和e光都是传播光线在双折射晶体内部定义的,双折射晶体外没有o光和e光光轴:晶体中的一个方向,光沿此方向传播不发生双折射,且折射光遵循折射定律光轴仅代表一个特殊的方向,凡平行于此方向的直线均为光轴只有一个光轴方向的晶体称作单轴晶体,有两个光轴方向的晶体称作双轴晶体在单轴晶体内,光线的传播方向与晶体光轴构成的平面称作该光线的主平面o主平面:光轴+o光线e主平面:光轴+e光线主截面:光轴+晶体表面法线。
入射面:入射光+晶体表面在入射点处的法线o光和e光都是线偏振光o光的电矢量垂直于o主平面,振动方向始终与光轴垂直。
e光的电矢量平行于e主平面,振动方向平行于e主平面通常e光不在入射面内,即e光和o光不共面。
只有当光轴在入射面内(也即入射光在主截面内)时,入射面、主截面、o主平面和e主平面四个面重合,此时o光和e光都在入射面内。
若入射光与光轴重合,则不再发生双折射。
若入射光与光轴共面但不重合,则有折射角t e≠t o,sin t e≠si n t o,发生双折射在双折射晶体中,o光沿各个方向传播的速度相同,o光的波面为半径为球面,o光的传播方向始终垂直于波面。
e光沿各个方向的传播速度不同,e光的波面为椭球面,传播方向仅在椭球的长短轴处垂直于波面。
o光和e光沿光轴方向的传播速度相同,沿垂直于光轴的方向传播速度相差最大n e称作晶体的主折射率。
n o为恒量,n e定义为e光沿垂直于光轴方向的折射率,其数学表达式中的v e也为同一方向的传播速度n e=cv e n o=cv o正晶体和负晶体:满足v o>v e→n o<n e的称作正晶体,e光波面在o光波面之内,椭球面内切于球面,切点为长轴(2v o t)的顶点,长轴方向即光轴,短轴(2v e t)。
2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。