最新3光在晶体中的双折射
- 格式:ppt
- 大小:563.00 KB
- 文档页数:7
晶体双折射现象的原因和现象晶体双折射现象,听起来好像很高深莫测,其实呢,它就是指一块晶体在不同的方向上看,会有不同的颜色。
这可不是闹着玩儿的,它可是科学家们研究了好久才搞明白的事情哦!
那么,为什么晶体会双折射呢?这个问题可不简单,要我说,它就像是一个人穿了一件衣服,但是从不同的角度看,这件衣服的颜色就会发生变化。
晶体也是这样,它穿上了一种叫做“光栅”的衣服,但是从不同的角度看,这件衣服的颜色就会发生变化。
这个现象最早是在18世纪的时候被发现的,当时科学家们还不知道这是怎么一回
事呢。
后来,随着科学技术的发展,人们逐渐搞明白了这个现象的原因。
原来,这是因为晶体的结构有两种不同的模式,就像是两个人长得有点像,但是却有一些细微的差别。
当光线通过晶体的时候,这些差别就会被放大,导致我们看到了不同颜色的现象。
那么,晶体双折射现象有哪些应用呢?其实呀,它的应用可广泛了呢!比如说,我们可以用它来制作显微镜、望远镜等光学仪器;还可以用它来制造激光器、光纤通信等高科技产品。
所以说,晶体双折射现象可是科学家们的宝贝哦!
晶体双折射现象虽然看起来很复杂,但是只要我们用心去理解,就会发现它其实是非常有趣的一个现象。
就像一个人穿了一件衣服,从不同的角度看就会有不同的效果一样,晶体也会因为结构的不同而呈现出不同的颜色。
希望我们都能够对这个神奇的现象有一个更深入的了解哦!。
晶体的双折射现象
晶体的双折射现象,也称为光学二轴性,是指光线在晶体中传播时,由于晶体的非均匀结构和各向异性特性,会发生折射光线的分离现象。
在晶体中,光线传播的速度和方向与光线的偏振方向和入射角度有关。
晶体的双折射现象主要源自以下原因:
1.各向异性:晶体的结构和物理性质在不同方向上可能会有所不
同。
这种各向异性导致光线在晶体内部以不同速度传播,从而
产生不同的折射角。
2.双折射轴:晶体中存在特定方向,称为双折射轴或光轴。
在双
折射轴上,光线的传播速度不受晶体结构的影响,沿着这个方
向传播的光线不发生分离。
当平行入射的自然光线(未偏振光)或偏振光通过晶体时,如果其传播方向与晶体的双折射轴垂直,则不会发生分离现象。
但是,如果入射方向与双折射轴不垂直,则光线会分成两束,沿不同方向传播,分别称为普通光和非普通光。
•普通光(o光):普通光以与入射方向相同的速度传播,遵循常规的折射规律,其折射率与入射角度有关。
•非普通光(e光):非普通光以与入射方向不同的速度传播,其折射率也与入射角度不同。
非普通光的传播速度取决于晶体的
结构和物理性质。
由于普通光和非普通光的传播速度和折射率不同,它们在晶体内
部传播时路径会发生偏离,导致折射光线的分离现象。
这种分离可以通过观察晶体上的双折射干涉图案或使用特殊的光学仪器(如偏振光显微镜)来观察和测量。
晶体的双折射现象在光学领域具有重要的应用,例如偏振光显微镜、波片、光学调制器等。
通过利用晶体的双折射特性,可以实现光的分离、调制和测量等功能。
2.9 光在晶体表面的反射与折射(一)光在晶体界面上的双折射双折射现象,是晶体各向异性的最重要、最直观的结果之一。
双折射:是指光在各向异性晶体中传播时,分为两束方向不同的光,向两个方向折射。
双折射现象表明:光在晶体中传播的相速度与光的偏振态和光的传播方向有关。
晶体与各向同性介质比较:不同的是物质方程;相同的是麦氏方程组和场的连续条件。
因此,反射和折射的矢量表达式仍然成立。
在各向同性介质中,学习折射和反射时:i r it ()0()0-⋅=⎧⎨-⋅=⎩k k r k k r 表示的物理意义:对于界面上的任一位置矢量r ,入射波、反射波和折射波的波矢量均在入射面内,而且各波矢量在界面上的投影大小不变:i r t i i r r t t sin sin sin k k k θθθ⋅=⋅⋅⇒==k r k r =k r晶体: 一般来说波法线方向和相应的光线方向不一致,而反射和折射定律是对波法线而言的,因此,其相应的光线一般不在入射面内,并且不遵守反射和折射定律。
也就是说对于各向同性介质,其波矢方向和光线方向一致,所以波矢和光线均满足折射、反射定律,但对于各向异性晶体来说,波矢方向和光线方向不一致,只有波矢满足折射、反射定律,光线不满足。
式中: 三个角度i r t θθθ、、是对应的波法线与界面法线的夹角。
晶体:存在双反射、折射,不同传播方向上对应的波矢不是常数,因此反射、折射角与入射角正弦比不是常数。
(二).光在单轴晶体中传播方向的确定分析光从各向同性介质向晶体入射的平行光束的传播行径,可以采用两种方法(计算方法,几何作图法)(1).计算方法利用反射和折射定律计算晶体中反射和折射光波的波法线的方向(因为只有我们的波法线方向满足我们的折射、反射定律),再由离散角关系式(利用光波法线方向和光线方向的夹角)求出相应的光线方向。
有关公式折射反射定律求波矢量方向:i i r r t t i i r r t tsin sin sin sin sin sin k k k n n n θθθθθθ====两束光波的折射率:o :k n n n θ'=''=波矢与z 轴的夹角 再利用:2o 2e tan 'tan 'z n n θθθ=:光线与轴的夹角 或者:2o 22o e 2e tan tan 1-1tan n n n n θαθ⎛⎫= ⎪⎝⎭+就可以求出光线方向。
晶体的双折射当光照射到各向异性晶体(单轴晶体,如方解石,石英,红宝石等)时,发生两个不同方向的折射;其中一个遵守折射定律,折射光线在入射面内,称为O光(ordinary ray 寻常光);另一束不遵守折射定律,不一定在入射面内的光称为e光(extraordinary ray 非常光),这两束光都是偏振光。
晶体产生双折射的原因:●晶体的各向异性;●O光和e光的传播速度不同,O光在晶体中各个方向的传播速度相同,因而折射率n o=c/υo=恒量;e光在晶体中的传播速度υe随方向变化,因而折射率n e=c/υe是变量,随方向变化。
由于o光和e光的折射率不同,故产生双折射。
实验发现,晶体中存在着某些特殊的方向,光沿着这些特殊的方向传播时,不发生双折射现象,这个特殊的方向称为光轴。
光轴仅标志一定的方向,不限于某一特殊的直线。
若沿光轴方向入射,O光和e光具有相同的折射率和相同的波速,因而无双折射现象。
以入射线为轴转方解石,光点O不动,e绕O转。
用偏振片检验,二者都是偏振光,且偏振方向相互垂直。
O光振动方向垂直于该光线(在晶体中)与光轴组成的平面。
e 光振动方向平行于该光线(在晶体中)与光轴组成的平面。
若光轴在入射面内,实验发现:O光、e光均在入射面内传播,且振动方向相互垂直。
惠更斯研究双折射现象提出:在各向异性的晶体中,子波源会同时发出o光、e光两种子波。
O光的子波,各方向传播的速度相同为v0,点波源波面为球面,振动方向始终垂直其主平面。
(如图1) O光只有一个光速v o 一个折射率n oe光的子波,各方向传播的速度不同。
点波源波面为旋转椭球面,振动方向始终在其主平面内.(如图2)●e光在平行光轴方向上的速度与O光的速度相同为v0●e光在垂直光轴方向上的速度与o光的速度相差最大,记为v e,其相应的折射率为n e图2n0 ,n e称为晶体的主折射率。
●正晶体 : n e> n o (υe< υo)如石英,冰等;●负晶体 : n e< n o (υe>υo)如方解石,红宝石等。
晶体双折射现象的原因和现象晶体双折射现象,听起来好像很高大上,其实咱们日常生活中就能遇到。
你有没有拿放大镜看过水晶球?或者在阳光下看到彩虹?这些都是晶体双折射现象的神奇表现。
今天,我就来给大家讲讲这个有趣的现象背后的原因和现象。
咱们要明白什么是晶体双折射。
简单来说,就是一块晶体有两种不同的折射率,就像咱们的眼睛一样。
当光线通过这块晶体时,会发生两次折射,形成一道分叉的光线。
这道分叉的光线就像是一个小小的“日食”,让人觉得非常神奇。
那么,为什么晶体会有这么神奇的双折射现象呢?这就要从晶体的结构说起了。
咱们知道,晶体是由许多小小的原子组成的。
这些原子之间的排列方式非常有规律,形成了一种特殊的结构。
这种结构叫做“布拉维格子”。
在布拉维格子中,原子之间的距离是固定的,但它们可以朝四面八方任意排列。
这种排列方式使得晶体具有了特定的几何形状和光学性质。
布拉维格子并不是完美的。
在某些特殊的情况下,原子之间的排列会发生变化,导致晶体的折射率也发生改变。
这就是晶体双折射现象产生的原理。
当光线通过这种具有双折射性的晶体时,就会发生两次折射,形成一道分叉的光线。
那么,晶体双折射现象有什么实际应用呢?其实很多哦!比如说,咱们常用的显微镜、望远镜等光学仪器中都使用了双折射材料。
这些材料可以让光线经过多次折射,从而放大物体的图像。
双折射材料还可以用来制作偏光片、色散器等光学元件。
这些元件可以将光线分解成不同波长的光束,从而实现各种复杂的光学效果。
除了科学应用之外,晶体双折射现象在日常生活中也有很多体现。
比如说,咱们刚才提到的水晶球和彩虹就都是双折射现象的表现。
水晶球中的分叉光线是由于水晶内部原子排列的变化导致的;而彩虹则是太阳光经过水滴折射后产生的。
这些美丽的现象都是大自然赋予我们的奇妙礼物。
晶体双折射现象是一种非常有趣的光学现象。
它不仅让我们对大自然的奥秘有了更深入的了解,还为我们的生活带来了许多实用的应用。
所以,下次当你看到水晶球或彩虹时,不妨想想背后的双折射原理,感受一下科学的魅力吧!。
6.3 晶体的双折射和二向色性一束单色光在晶体表面折射时(图6-5),一般可以产生两束折射光,这种现象叫做双折射。
两束折射光中,有一束总是遵守折射定律,称为寻常光,用符号o 表示;另一束一般不遵守折射定律,称为非常光,用符号e 表示。
o 光和e 光都是线偏振光。
为了说明o 光和e 光的振动方向和传播方向,需要了解晶体内某些特殊的方向和平面:光轴——晶体内一个特殊的方向,当光沿这个方向传播时,不发生双折射现象,并且o 光和e 光的传播速度相等。
只有一个光轴方向的晶体,称为单轴晶体(如方解石、石英、红宝石等)。
有两个光轴方向的晶体,称为双轴晶体(如云母、霰石、蓝宝石等)。
主平面——由o 光和光轴组成的面称o 主平面;由e 光和光轴组成的面称e 主平面。
o 光的电矢量振动方向垂直于o 主平面,e 光的电矢量振动方向则在e 主平面内。
主截面——由光轴和晶体表面法线组成的面。
可以证明,当光线以主截面为入射面时,o 光和e 光都在主截面内,这时主截面也是o 光和e 光的共同主平面。
晶体产生双折射的原因,在于晶体在光学上的各向异性。
由电磁理论可以证明,对于晶体内除光轴外的一个给定的方向,允许两束电矢量互相垂直的线偏振光以不同的速度传播。
对于单轴晶体,其中一束光的速度不随传播方向改变,这就是o 光。
它的波面是一个球面。
另一束光的速度随传播方向改变,这就是e 光,它的波面是一个以光轴为对称的回转椭球面,其方程为θθ222222s i n c o s e o on n c v += (6-3) 式中o n 是o 光折射率,e n 是e 光沿垂直于光轴方向传播时的折射率,θ是e 光线与光轴的夹角,c 是真空中光速。
负晶体(e o n n >)和正晶体(e o n n <)的o 光、e 光波面分别如图6-6a)和b)所示。
利用波面的概念,由惠更斯作图法便可求出晶体中o 光和e 光的折射方向。
应该注意,晶体中e 光线的传播速度和方向一般地与它的波阵面的传播速度和方向(沿波阵面法线方向)不同(见图6-7),后者称为法线速度。