由视图到立体图形
- 格式:ppt
- 大小:3.10 MB
- 文档页数:20
下面三个平面图形是上面这个物体的三视图中正视图的是( )
侧视图的组成包括( ).
(A)左视图 (B)右视图(C)左视图和右视图
你能画出组合图形的三视图吗?
下面所给的三视图表示什么几何体?
这是一个立体图形的三视图,你能说出它的名称
这是一个立体图形的三视图,你能说出它的名称
这是一个立体图形的三视图,你能说出它的名称
这是一个立体图形的三视图,你能说出它的名称
这是一个立体图形的三视图,你能说出它的名称
这是一个立体图形的三视图,你能说出它的名称
主 左 俯
这是一个立体图形的三视图,你能说出它的名称
主 左 俯
这是一个立体图形的三视图,你能说出它的名称
主 左 俯
下面图(1)与图(2)是几个小方块所搭几何体俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出这两个几何体的主视图、左视图.
由几个相同的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小方块的个数.请画出这个几何体的三视图.
用小方块搭成一个几何体,使它的主视图和俯视图如图所示,它最少需要多少个小立方块,最多需要多少个小立方块?
正 俯
找出与下图中各三视图对应的立体图形,将号码填入括号中
如图,这是一个由小立方块所搭成的几何体的俯视图,图中的数字表示在该位置上小立方块的个数,请画出它的正视图和左视图。
由视图到立体图形-华东师大版七年级数学上册教案一、知识点概述本节课主要涉及到三个方面的内容:1.立体图形的定义与性质;2.立体图形的投影方法;3.立方体与正四面体的认识。
二、教学目标1.理解立体图形的概念与性质;2.掌握多视图法画立体图形的方法;3.掌握截影法画立体图形的方法。
三、教学重点与难点1.理解立体图形的概念与性质;2.掌握截影法画立体图形的方法。
四、教学内容及课时安排本节课程安排为1课时,内容如下:1、课前导入(15分钟)1.老师介绍本次课程的学习内容;2.学生回忆上节课的学习内容,为本节课程做好铺垫。
2、讲解新知(25分钟)1.老师讲解立体图形的定义与性质;2.老师讲解多视图法画立体图形的方法;3.老师讲解截影法画立体图形的方法。
3、练习与讨论(20分钟)1.老师进行一道立体图形的练习题的讲解;2.学生课堂上自己练习画立体图形;3.学生就画图方法的问题,与周围同学交流讨论。
4、课堂小结(10分钟)1.老师对本节课程进行总结;2.学生对本节课程进行反思,写下自己的学习笔记;3.确认下节课的学习内容和作业。
五、教学方法1.讲授法:通过老师的讲解,使学生了解立体图形的概念与性质;2.实践法:通过练习画图的方式,使学生巩固学习内容;3.讨论法:通过与同学讨论,解决画图中遇到的问题;4.总结法:通过老师对本节课程的总结,使学生对学习的内容有一个完整的认识。
六、教学工具与素材1.幻灯片:介绍学习内容和方法;2.教材: 《数学》华东师大版七年级上册;3.黑板与彩笔:练习画图。
七、教学评估1.课堂练习:学生听课、练习画图的情况与表现;2.练习作业的完成情况:对本节课程的掌握程度进行评估;3.学生的笔记本:学生对本节课程的学习进行记录。
八、教学建议1.可以提前通知学生,让他们自己多带一些铅笔和橡皮;2.改变老师单一讲授的方式,可以让学生自己先画画图再进行讨论,使课堂更加生动有趣;3.练习题可以多一些,让学生在课后多加练习。
初一数学由视图到立体图形课堂导学一.选择题(共20小题)1.如图是由几个大小相同的小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则该几何体的主视图是()A.B.C.D.2.某几何体的三视图如图所示,则此几何体是()A.B.C.D.3.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图正确的是()A.B.C.D.4.某几何体的三视图如图所示,这个几何体是()A.三棱柱B.球体C.圆锥体D.圆柱体5.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该方块的个数,则这个几何体的左视图为()A.B.C.D.6.一个几何体的三视图如图所示,该几何体是()A.正方体B.圆锥C.三棱柱D.四棱柱7.如图三视图所对应的直观图是下面的()A.B.C.D.8.某几何体由一些大小相同的小正方体组成,如图是它的俯视图和主视图,那么组成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个9.如图所示是由几个小立方块搭成的几何体的俯视图,则这个几何体左视图是()A.B.C.D.10.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的左视图是()A.B.C.D.11.一个几何体由若干个相同的正方体组成,其主视图和左视图如图所示,则这个几何体中正方体最多有()个.A.3B.4C.5D.612.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A.6B.8C.10D.1213.从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.7个14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个15.某几何体的三视图如图所示,则此几何体是()A.圆锥B.长方体C.圆柱D.四棱柱16.如图,是一个由多个相同小正方体搭成的几何体的俯视图,图中所标的数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.17.由几个大小相同的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.818.如图是由6个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.19.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的左视图为()A.B.C.D.20.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为()A.5个B.6个C.7个D.8个二.填空题(共30小题)21.由若干个小正方体组成的几何体的三视图如图所示,则组成这个几何体的小正方体的个数为.22.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,从三面看到的平面图形如图所示,则n的值是.23.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,那么搭成该几何体至少需用小立方块个.24.如图,是由几个边长为1的小立方体所组成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为.25.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是.26.若一个几何体由若干个完全相同的小正方体构成,并且该几何体从正面和上面看到的形状图如图所示.则构成这个几何体的小正方体的个数最少是.27.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.28.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是.29.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状图如图所示,则该几何体最少是用个小立方块搭成的.30.如图是由几个相同的小正方体分别从上面、左面看到的形状图,这样的几何体最多需要个小立方体块,最少需要个小立方体块.31.用小立方块搭一个几何体,使得它从正面看和从上面看到的形状图如图所示,它最少要m个小立方块,最多要n个小立方块,则m+n的值为.32.用小立方体搭一个几何体,从它的正面、上面看到的形状图如图所示,则搭这样的几何体最多需要个小立方体,最少需要个小立方体.33.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有个.34.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是.35.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是.36.一个几何体从正面和上面看到的图形如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=.37.用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要个立方块,最多要个立方块.38.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是.39.用小立方体搭一个几何体,分别从它的正面、上面看到的形状如图所示.这样的几何体最少需要个小立方体;最多需要个小立方体.40.在桌子上摆有一些大小相同的正方体木块组成一个几何体,如图分别是从正面和从上面看到的形状图,组成这个几何体的小立方块个数最多需要块.41.一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为个.42.由一些完全相同的小正方体搭成的几何体,分别从它正面和左面看到的几何体的形状图如图所示,组成这个几何体的小正方体的个数最少是,最多是.43.用小立方块指一个几何体,使它的从正面和从上面看到的这个几何体的形状图如图所示,这个几何体最少要a个小立方块,最多要b个小立方块,则a+b=.44.由若干个相同的小正方形达搭成一个几何体,分别从正面和左面看,所得的形状如图所示,则搭建这个几何体所需的小正方体的个数最少是.45.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的最大值和最小值之和为.46.一个几何体由若干大小相同的小立方块搭成的,如图分别是从它的左面,上面看到的平面图形,则组成这个几何体的小立方块最多有个.47.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状用如图所示,则所需的小正方体的个数最多是个.48.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为,最少为.49.用若干个相同的小正方体搭一个几何体,该几何体的主视图、俯视图如图所示.若小正方体的棱长为1,则搭成的几何体的表面积是.50.由几个小正方体组成的几何组合体的主视图、左视图如图所示,那么这几何组合体至少由个小正方体组成.三.解答题(共10小题)51.用若干个完全相同的小正方体搭成一个几何体,当从正面、上面看这个几何体时,得到的图形如图所示.问:在这个几何体中,小正方体的个数最多是多少?最少是多少?52.用小立方块搭成一个几何体,使它从正面和上面看到的形状图如图所示.搭建这样的几何体,最多要几个小立方块?最少要几个小立方块?53.一个几何体从正面和从上面看到的图形如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,求a+b的值.54.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.55.一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)56.一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?57.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.58.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体需要小正方体最多几块?最少几块?答:最多块;最少块.59.一个立体图形是由若干个小正方体堆积而成的,其三视图如图,则组成这个立体图形的小正方体有多少个.60.下面的图形是一个物体的三视图,请画出这个物体的形状.。
4.2.2 由视图到立体图形(说课稿)一、教材结构与地位分析本节课是华师大版七年级上册第四章第二节第二课时的内容,本节课内容是在学生学习了由立体图形到视图的基础上进行的。
人们在日常生活中接触到的是立体图形,而要研究它,往往把它转化成平面图形来研究。
“由视图到立体图形”的主要作用是初步培养学生的空间观念.本节由物体的三视图辨认出该物体的形状,是一个充满丰富想象力和创造性的探索过程.根据三视图描述基本几何体或实物原型,因此是学生学习平面图形到立体图形的一个重要的纽带。
教材结构分析,本节教材中分为两部分,第一部分是根据熟悉的立体图形的三视图说出简单的立体图形,第二部分是根据一个物体的三视图想象该物体的形状。
二、目标设置【课标要求】会根据视图描述简单的几何体。
【学习目标】1、能根据物体的三视图说出物体的形状2、能根据几个小立方块所搭几何体的俯视图及小正方形中的数字画出相应几何体的主视图、左视图。
3、能根据几个小方块搭成的几何体及它的主视图和俯视图,说出它最少需要多少个小立方块,最多需要多少个小立方块三、学情分析从已有的认知水平:七年级学生对身边有趣的事物充满好奇,对一些有规律性的问题充满探求的欲望,他们非常乐意动手操作,有很强的好胜心和表现欲,有一定的归纳能力。
但是他们开始接触几何知识,空间想象力太弱,缺乏从多角度观察事物的经验。
从已有的活动经验:已有根据立体图形画三视图的方法经验。
四、四基三点:基础知识:物体的三视图基本技能:能根据物体的三视图说出物体的形状基本思想:空间观念重点:由物体的三视图辨认出物体形状难点:能根据几个小立方块所搭几何体的俯视图及小正方形中的数字画出相应几何体的主视图、左视图。
五、重难点处理方法重点的处理方法:先用实物将同一个物体的三视图拼出来,将有关视图联系起来,找出各视图间的关系,引导学生综合考虑三个视图之间的联系,从而培养学生的空间想象能力,并将物体的形状画出来。
难点的处理方法:先用小立方块将几何体的俯视图及小正方形中的数字拼出来,这样立体图形就出来了,再根据立体图形将左视图和主视图画出来,观察俯视图中的小正方形中的数字与左视图,主视图每一列,行的个数的关系,从中总结方法规律。