数学物理方法第七章数学物理定解问题
- 格式:ppt
- 大小:1.97 MB
- 文档页数:82
《数学物理方法》课程考试大纲一、课程说明:本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。
本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。
为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。
本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。
本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。
二、参考教材:必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。
参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。
三、考试要点:第一章复变函数(一)考核知识点1、复数及复数的运算2、复变函数及其导数3、解析函数的定义、柯西-黎曼条件(二)考核要求1、掌握复数三种形式的转换。
2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的方法。
u 。
3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv第二章复变函数的积分(一)考核知识点1、复变函数积分的运算2、柯西定理(二)考核要求1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。
2、掌握应用原函数法计算积分。
3、掌握柯西公式计算积分。
第三章幂级数展开(一)考核知识点1、幂级数的收敛半径2、解析函数的泰勒展开3、解析函数的洛朗展开(二)考核要求1、理解幂级数收敛圆的性质。
2、掌握把解析函数展开成泰勒级数的方法。
3、掌握把环域中的解析函数展开成洛朗级数的方法。
4、理解孤立奇点的分类及其类型判断。
第四章留数定理(一)考核知识点1、留数的计算2、留数定理3、利用留数定理计算实变函数定积分(二)考核要求1、掌握留数定理和留数计算方法。
数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第七章Green函数法Green Function method引言前面几章我们系统的讨论了求解数学物理方法的几种典型方法:分离变量法,行波法以及积分变换法。
分离变量法主要适用于求解各种有界区域内的定解问题,行波法则主要适用于求解无界区域内的波动问题,而积分变换法也主要适用于求解无界区域内的定解问题,然而不受方程类型的限制。
同时,分离变量法,积分变换法这两种方法所给出的解,一般具有无穷级数与无穷积分的形式。
本章介绍求解数学物理方程的另一重要方法——Green函数法。
所不同的是,该法给出的是一种有限积分的解,便于人们进行理论分析与研究。
Green函数的特点是它仅与定解问题所定义的区域的形状及边界条件类型有关,而与定解条件及方程非齐次项所给出的具体形式无关。
特别是一些用分离变量法较难处理的非齐次方程的定解问题,Green函数法更能显示出其优越性。
从物理上看,一个数学物理方程在大多数情况下,往往表示一种特定的“场”和产生这种场的“源”之间的关系。
如热导方程表示的是温度场与点源之间的关系,泊松方程表示的是静电场和电荷分布之间的关系等。
这样,当源被分解成许多点源的叠加时,如果通过某一种方法知道各点源产生的场,然后再利用叠加原理,就可以求出同样边界条件下任意源的场,这种求解数理方程的方法被称为Green函数法,而点源产生的场就是Green函数。
本章首先复习Laplace方程边值问题的几种类型,然后由Green公式建立起Green函数的概念,并通过Green函数得到一般的泊松方程边值问题解的积分表达式,最后在几个特殊区域上讨论Green函数及Laplace方程的第一边值问题具体的求解过程。
7.1 Laplace 方程边值问题7.1.1 内问题Laplace 方程: 2222220u u ux y z∂∂∂++=∂∂∂0u ∆=描述物理中的平衡、稳定等现象,从而变化过程与时间无关,这时不提初始条件,边界条件常用到以下三种:1. 第一边值问题 Dirichlet 问题设曲面P 为空间某一区域Ω的边界,f 是定义在曲面P 上已知连续函数,求一函数(,,)u u x y z =满足Laplace 方程,满足光滑性条件:在区域Ω内有二阶连续偏导数,在Ω=Ω+Γ上连续,且有uf Γ=具有二阶连续偏导数且满足Laplace 方程的函数称为调和函数。
《数学物理方法》课程教学大纲课程名称:数理方法课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56 学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标数学物理方法课程是适用于物理、光信息科学、计算科学等理工科专业本科的重要基础课,也是专业核心课程。
它的基本理论和方法,具有较强的逻辑性,抽象性和广泛的实用性。
通过本课程的学习,使学生掌握有关复变函数的基本理论,积分变换及数理方程的定解问题及其求解方法,为进一步学习后继课程提供必要的数学基础。
同时可培养学生的逻辑思维能力,数学建模能力,帮助学生树立科学的学习观,使学生初步具备解决简单常见物理和工程实际问题的素养。
本课程主要包括复变函数及其理论,积分变换,线性常微分方程的级数解法和数学物理方程等四块基本内容,是学生学习电动力学,量子力学和固体物理等专业核心课的必备基础。
其具体的课程教学目标为:课程教学目标1:熟练掌握复变函数求导,积分计算,泰勒级数和洛朗级数展开,留数定理及其应用,会计算物理中相应的数学问题。
课程教学目标2:深刻理解积分变换法,数理方程的定解问题及其计算方法,会用积分变换法,分离变量法和格林函数法求解电动力学和量子力学中的相关问题。
课程教学目标3:了解某些特殊函数及其性质,学会它们在物理学中的基本应用,让学生感受数学工具和数学表达在物理学中的重要地位。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求本课程要求学生熟悉复变函数的一些基本概念,掌握泰勒级数及洛朗级数的展开方法,利用留数定理来计算围道积分和三类特殊类型的实变函数定积分;掌握傅立叶变换和拉普拉斯变换的概念及性质,并能运用拉普拉斯变换方法求解积分、微分方程。
了解三种类型的数学物理方程的导出过程,能熟练写出定解问题;掌握利用分离变量法求解各类齐次方程,了解非齐次方程的求解方法;了解特殊函数的常微分方程,掌握用级数解法求解二阶常微分方程,了解施图姆-刘维尔本征值问题及性质;掌握勒让德多项式、贝塞尔函数的基本性质,并学会利用勒让德多项式求解轴对称型的拉普拉斯方程。
数学物理方法习题解答一、复变函数局部习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,那么上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,那么()f z ∴ 在原点上满足C -R 条件。
但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。
令y 沿y kx =趋于0,那么依赖于k ,()f z ∴在原点不可导。
4、假设复变函数()z f 在区域D 上解析并满足以下条件之一,证明其在区域D 上必为常数。
〔1〕()z f 在区域D 上为实函数; 〔2〕()*z f 在区域D 上解析; 〔3〕()Re z f 在区域D 上是常数。
证明:〔1〕令()(,)(,)f z u x y iv x y =+。
由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。