数学物理方法_第1章 数学物理定解问题
- 格式:pdf
- 大小:594.85 KB
- 文档页数:58
数学物理方法复习整理数学物理方法一、本课程的教学内容第1章典型数学物理方程及定解问题第2章分离变量法第3章积分变换法第4章行波法和降维法(达朗贝尔法)第5章数理方程差分法第6章格林函数法第7章bessel方程与函数二、章节重点第一章典型的数学和物理方程及定解问题1。
术语解释:(1)定解条件、定解问题、定解问题的适定性;(2).dirichlet、neumann定解问题;(3)傅立叶热传导定律和胡克弹性定律;(4)演化方程,势方程,拉普拉斯方程,泊松方程;2.简述二阶线性偏微分方程的分类方法。
3.推导一维波和热传导方程。
4.写出二阶偏微分方程的特征方程及其特征曲线。
5.书1.4习题:1,3,4,7,8,96.书中示例1.1.1、1.1.3、1.1.6和1.2.1第二章分离变量方法1。
名词解释:(1)特征值、特征函数、sturm-liouville问题;(2)驻波、腹点、节点、基频、固有频率;(3)三角函数系正交性;(4)fourier级数;(5)矩形和圆形区域上的拉普拉斯问题;2.简述采用分离变量法求解齐次边界条件的齐次线性偏微分方程定解问题的步骤。
3.第2.7册练习:1,4,6,8,15,16(p65-67)。
4.书籍示例:2.1.1、2.1.2、2.2.1。
第三章积分变换方法1。
术语解释:(1)fourier变换;(2)laplace变换;(3)傅里叶变换,线性性质,位移性质;(4)拉普拉斯变换,线性性质,平移性质,微分性质;2.简述用积分变换法求解偏微分方程定解问题的基本步骤。
3.写出傅里叶变换和拉普拉斯变换的存在条件。
4.用傅里叶变换方法导出了无限弦振动的达朗贝尔公式。
5.第3.6册练习:1(1)(2)、6、9(1)(2)、12、13(p93-94)。
6.书籍示例:3.1.1;3.1.2; 3.3.1、2、3、4、6;例3.4.1、3.4.2、3.4.3解的像函数。
第四章行波法与降维法(d’alembert法)1.名词解释:(1)无限长弦自由振动的达朗贝尔公式;(2)行波速度;(3)特征变换,特征线;(4)球对称性,降维法;2.简要描述达朗贝尔公式的物理意义。
无界区域的定解问题前言:对于定义在整个空间或半空间的偏微分方程的定解问题,原则上可以用分离变量法求解,另外还有一些专门的方法来解决这类问题,本章就讨论这些解法。
含两个自变量x 和y 的二阶线性偏微分方程的一般形式为:),(22122222122211y x f cu y ub x u b yu a y x u a x u a =+∂∂+∂∂+∂∂+∂∂∂+∂∂其中11a ,12a ,22a ,1b ,2b 和c 都只是x 和y 的函数。
根据判别式2211212a a a -=∆符号的不同可如下来划分偏微分方程的类型⎪⎩⎪⎨⎧<-=∆=-=∆>-=∆椭圆型,抛物型,双曲型,000221121222112122211212a a a a a a a a a 定解问题: ⎪⎪⎩⎪⎪⎨⎧>>∞<<-∞=∂∂==∂∂-∂∂==)0,0,(,)(),(),(),(00022222a t x x t x u t x t x u x u a t u t t ψϕ由于111=a ,012=a ,222a a -=,则0)(222211212>=-->-=∆a a a a a 。
令at x t x +=),(ζ,at x t x -=),(η,),(),(ηζv t x u =,可化为:02=∂∂∂ηζv通解为:)()(),(21ηζηζf f v +=,其中)(1ζf ,)(2ηf 为任意函数。
通解为:)()(),(21at x f at x f t x u -++= 代入初始条件可得:⎪⎩⎪⎨⎧-+=-⇒='-'⇒=∂∂=+⇒=⎰==)()()(1)()()()()()(),()()()()(),(0201212102100x f x f d a x f x f x x f a x f a x t x u tx x f x f x t x u x x t t ζζψψψϕϕ由上式可推出:⎪⎩⎪⎨⎧---=-++=⎰⎰)]()([21)(21)(21)()]()([21)(21)(21)(020*******00x f x f d a x x f x f x f d a x x f x x x x ζζψϕζζψϕ 特解: ⎰+-+-++=atx at x d aat x at x t x u ζζψϕϕ)(21)]()([21),(达朗贝尔公式的物理意义: 初位移)(x ϕ分成两半,各为2)(x ϕ,经过时间t 分别向左移动at 变成2)(at x +ϕ,向右移动at 变成2)(at x -ϕ,移动的速度均为a ,弦的总位移),(t x u 为2)(at x +ϕ和2)(at x -ϕ的叠加。
求定解问题数学物理方法例题1. 一辆汽车从A点出发,经过2小时行驶到B点,然后再经过3小时回到A点。
假设这两段行驶均在同一条直线上,求这辆车的平均速度。
答:假设AB之间的距离为d,时间 t1=2 小时,时间 t2=3 小时。
根据平均速度的定义,平均速度 = 总路程 / 总时间。
总路程 = 2d (从A到B)+ 2d (从B到A)。
总时间 = t1 + t2 = 5小时。
所以平均速度 = 总路程 / 总时间 = (2d + 2d) / 5 = 4d / 5。
2. 一个投掷物从地面上以速度 v0 垂直向上抛出,忽略空气阻力。
求物体到达最高点的时间和最大高度。
答:假设加速度 g = 9.8 m/s²是重力加速度,v0 是初始速度。
根据运动学公式,物体到达最高点时,垂直速度为 0,所以 v = v0 - gt = 0。
解出时间 t = v0 / g。
最大高度为 h = v0 * t - 1/2 * g * t² = v0² / (2g)。
3. 一个弹簧常数为 k 的弹簧,两端有各自质量为 m1 和 m2 的物体。
当这两个物体振动时,求两个物体的共同频率。
答:假设物体1的振动频率为 f1,物体2的振动频率为 f2。
根据振动的基本原理,弹簧的劲度系数k = m1 * (2πf1)² = m2 * (2πf2)²。
解方程组可以得到f1 = sqrt(k / (4π²m1)),f2 = sqrt(k /(4π²m2))。
所以两个物体的共同频率为sqrt(k / (4π²m1)) = sqrt(k / (4π²m2))。
希望以上例题能对您有帮助!请注意,这些例题仅供参考,并不代表所有数学和物理的定解问题。
课程介绍数学物理方法是物理类专业的必修课和重要基础课,也是一门公认的难道大的课程。
该课程通常在本科二年级开设,既会涉及到先行课高等数学和普通物理的内容,又与后续课程密切相关。
故这门课学习情况的好坏,将直接关系到后继课四大力学和专业课程的学习问题,也关系到学生分析问题解决问题的能力的提高问题。
如何将这门“难教、难学、难懂”的课变为“易教、易学、易懂”的课,一直是同行教师十分关注的问题。
本课程包括复变函数论、数学物理方程、特殊函数、非线性方程和积分方程共四篇的内容。
其中,第一篇复变函数论又含解析函数、解析函数积分、无穷级数、解析延拓·Г函数和留数理论五章;第二篇数理方程又包括:定解问题、行波法、分离变量法、积分变换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。
第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。
《数学物理方法》是物理系本科各专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为进行下一步的专业课程学习提供基础的数学处理工具。
所以,本课程受到物理系学生和老师的重视。
对一个物理问题的处理,通常需要三个步骤:一、利用物理定律将物理问题翻译成数学问题;二、解该数学问题;三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。
因此,物理是以数学为语言的,而"数学物理方法"正是联系高等数学和物理专业课程的重要桥梁。
本课程的重要任务就是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法,如分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等等。
近十几年来,负责厦门大学物理系"数学物理方法"课程教学的教师共有三位(朱梓忠教授,张志鹏,李明哲副教授),他们都是中青年教师,均获得物理方面的理学博士学位。
数学物理方法习题解答一、复变函数局部习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,那么上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,那么()f z ∴ 在原点上满足C -R 条件。
但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。
令y 沿y kx =趋于0,那么依赖于k ,()f z ∴在原点不可导。
4、假设复变函数()z f 在区域D 上解析并满足以下条件之一,证明其在区域D 上必为常数。
〔1〕()z f 在区域D 上为实函数; 〔2〕()*z f 在区域D 上解析; 〔3〕()Re z f 在区域D 上是常数。
证明:〔1〕令()(,)(,)f z u x y iv x y =+。
由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。
万义顿数学物理方法讲义第一章引言数学物理方法是研究物理问题的一种重要工具,它结合了数学和物理的知识,为解决实际问题提供了有力的支持。
本讲义主要介绍了万义顿数学物理方法的基本概念和应用,旨在帮助读者掌握这一领域的核心知识。
第二章矢量分析矢量分析是数学物理方法中的重要内容,它用于描述和分析具有方向和大小的物理量。
本章介绍了矢量的基本概念、运算法则以及常见的坐标系,通过具体的例子帮助读者理解并掌握矢量分析的基本方法。
第三章微分方程微分方程是数学物理方法中的核心内容,它用于描述物理系统的演化规律。
本章介绍了常微分方程的基本概念和解法,包括一阶和高阶微分方程的求解方法,以及常见的物理应用。
第四章偏微分方程偏微分方程是数学物理方法中的重要内容,它用于描述空间变量和时间变量同时存在的物理问题。
本章介绍了常见的偏微分方程,包括热传导方程、波动方程和亥姆霍兹方程,以及它们的解法和物理应用。
第五章线性代数线性代数是数学物理方法中的基础知识,它用于描述和求解线性方程组。
本章介绍了向量空间、矩阵和线性变换的基本概念,以及线性方程组的解法和矩阵特征值与特征向量的计算方法。
第六章复变函数复变函数是数学物理方法中的重要工具,它用于描述具有复数自变量和复数因变量的函数。
本章介绍了复数的基本概念、复变函数的导数和积分,以及复变函数的级数展开和留数定理的应用。
第七章特殊函数特殊函数是数学物理方法中的特殊解析函数,它们在物理问题的求解中起着重要作用。
本章介绍了常见的特殊函数,包括贝塞尔函数、勒让德多项式和超几何函数等,以及它们的性质和应用。
第八章变分法变分法是数学物理方法中的一种优化方法,它用于求解变分问题和极值问题。
本章介绍了变分法的基本概念和应用,包括欧拉-拉格朗日方程、哈密顿原理和变分问题的求解方法。
第九章概率论与统计概率论与统计是数学物理方法中的一种数学工具,它用于描述和分析随机现象。
本章介绍了概率论的基本概念和统计学的基本方法,包括概率分布、随机变量和参数估计等。