引物设计流程之基因编码区(CDS)扩增引物设计
- 格式:doc
- 大小:1.18 MB
- 文档页数:14
引物设计是PCR(聚合酶链式反应)技术中的关键步骤,以下是引物设计的详细步骤:选择合适的引物长度:通常选择18-30个核苷酸长度的引物。
引物太短可能降低特异性,
而太长则可能导致非特异性结合。
选择合适的引物GC含量:通常选择40%-60%的GC含量。
GC含量过高或过低都可能
影响PCR的效率。
避免引物二聚体和发夹结构:这些结构可能导致引物自身结合,从而影响PCR的效率。
可以使用软件工具检查引物的这种可能性。
避免引物间的互补:引物之间互补的序列可能导致引物结合,从而影响PCR的效率。
选择合适的引物位置:引物应位于目标基因的特异区域,通常选择基因的编码区。
此外,应避免选择有高突变率的区域,这可能影响引物的特异性。
使用软件进行引物设计:有许多在线和离线软件可以帮助设计PCR引物,如Primer3、Oligo 等。
这些软件可以根据输入的基因序列自动设计和选择最佳的引物。
实验验证:即使通过软件设计的引物看起来很好,也需要在实验中进行验证,以确保其特异性、有效性和可靠性。
引物浓度和退火温度的优化:引物的浓度和退火温度也是PCR的重要参数,需要针对特定的反应条件进行优化。
请注意,对于具体的实验和目的,可能需要更具体和详细的设计考虑,建议咨询相关领域的专家或具有丰富经验的实验员。
引物设计的详细步骤详细步骤如下:步骤一:了解引物设计的基本原理引物设计是指为特定的DNA序列设计一对合适的引物,以便在PCR反应中扩增目标DNA序列。
引物是PCR反应的关键组成部分,引物的选择和设计对于PCR扩增的成功率和特异性非常重要。
因此,了解引物设计的基本原理对于有效设计合适的引物至关重要。
步骤二:确定PCR反应的目标序列在设计引物之前,我们需要确定PCR反应的目标序列,即我们需要扩增的DNA区域。
这个目标序列可以是已知的基因序列,也可以是未知的区域。
确定目标序列后,我们可以继续设计引物。
步骤三:确定引物的一些基本参数在设计引物之前,我们需要确定一些基本的参数,以便帮助我们选择合适的引物。
这些参数包括引物的长度、GC含量、Tm值以及避免二聚体形成等。
引物长度:通常来说,引物的长度应在18-25个核苷酸之间。
过长的引物可能导致不特异的扩增产物的形成,而过短的引物则可能导致低扩增效率。
GC含量:引物的GC含量对于引物的稳定性和特异性有影响。
在正常情况下,引物的GC含量应在40%-60%之间。
Tm值:引物的Tm值是指引物在PCR反应中的解离温度。
Tm值过低可能导致非特异的扩增产物的形成,而Tm值过高则可能导致低扩增效率。
避免二聚体形成:在设计引物时,我们还需要考虑引物之间的互补性以及避免引物形成二聚体。
引物之间的互补性可能导致引物形成二聚体,从而降低PCR反应的效率和特异性。
步骤四:选择合适的引物设计工具目前有很多在线引物设计工具可供选择,例如NCBI Primer-BLAST、OligoAnalyzer等。
这些工具可以根据输入的目标序列帮助我们快速选择合适的引物。
此外,还可以使用一些商业引物设计软件,如Primer Premier等。
步骤五:进行引物特异性分析设计好引物后,我们需要进行引物特异性分析,确保引物只扩增目标序列而不扩增其他非特异性产物。
这可以通过BLAST或其他相似性工具来完成。
特异性分析的目的是排除可能存在的非特异性扩增产物,以确保PCR反应的准确性和特异性。
PCR引物设计流程(以扩增鹅PHIP基因编码区序列为例)一.流程图二.确定模板1.确定模板来源物种近亲物种:原鸡,绿头野鸭,鸽,雀,鹦鹉,蜂鸟等常用物种:灵长类(人,大猩猩,恒河猴),哺乳类(大鼠,小家鼠,猪,牛,羊,狗),爬行类(鳄,龟),两栖类(蛙,蟾蜍),鱼类(斑马鱼,亚马逊帆鱼)一般在每一类常用物种中选择一个物种,在近亲物种中选择2种以上作为模板。
如,扩增鹅PHIP基因选择以下物种序列为引物设计模板:鸡,鸭,人,小鼠,蟾蜍,斑马鱼。
2.利用NCBI得到各物种需扩增基因的模板序列A.进入NCBI主页/,选定搜索范围为“Gene”,关键词为“PHIP”,得到如下图搜索结果(也可在关键词中包含物种名,如“PHIP Anser”,物种的英文名和拉丁学名在搜索时都可使用)。
B.点击所需物种的PHIP基因,进入该基因的报告页面(以人PHIP基因为例)。
基因报告页面中部Refseq条目中显示该基因在NCBI中的参考序列,该条目下可得到mRNA序列。
如下图。
另,关于RefSeq条目的相关名词解释参考/refseq/about/。
C.需注意:对于同一基因的mRNA可能具有不同长度的剪切异构体,选择模板时不同物种应尽量选择同一异构体(一般选择最长的异构体)。
D.如需得到该基因所在基因组的序列信息(如扩增启动子区域时),在基因报告页面上部Genomic regions,transcripts,and products 条目下,点击Go to nucleotide选项下FASTA按钮可进入基因组(组装)序列页面。
E.在基因组(组装)序列页面中,默认仅显示跳转前基因的序列,在Change region show 条目中修改设置为Whole sequence得到基因组序列,在Send选项下保存即可。
3.整理下载的模板序列三.寻找保守区域保守区域的意义:基因的保守区域是指不同来源的同一个基因在某些区域没有差别或者差别很小。
全基因扩增的引物设计步骤引言全基因扩增(Whole Genome Amplification,WGA)是一种将整个基因组进行扩增的技术,可以从极少量的DNA样本中获得足够的DNA量进行后续实验。
在全基因扩增过程中,引物设计是至关重要的一步,它直接影响扩增效率和特异性。
本文将详细介绍全基因扩增的引物设计步骤。
引物设计步骤1. 确定扩增目标在进行全基因扩增之前,首先需要确定扩增的目标。
可以是整个基因组的扩增,也可以是特定区域的扩增。
根据扩增目标的不同,可以选择不同的引物设计策略。
2. 引物长度选择引物的长度对扩增效率和特异性有重要影响。
通常,引物的长度在18-30个碱基对之间。
较短的引物可以提高扩增效率,但可能会导致非特异性扩增产物的产生;较长的引物可以提高特异性,但可能会降低扩增效率。
3. 引物序列选择引物序列的选择是引物设计中最关键的一步。
以下是引物序列选择的几个要点: - 引物应具有足够的特异性,避免非特异性扩增产物的产生。
可以通过比对基因组数据库或使用引物设计软件来评估引物的特异性。
- 引物的GC含量应适中,一般在40-60%之间。
过高或过低的GC含量可能会影响扩增效率。
- 引物的3’端应尽量避免出现重复序列或富含AT或GC碱基对的序列,以减少扩增的非特异性。
- 引物的3’端还可以加入一些特定的序列,如限制性酶切位点、引物标签等,以方便后续实验操作。
4. 引物的互补性检查在引物设计完成后,需要进行引物的互补性检查。
引物之间的互补性可能会导致二聚体的形成,影响扩增效率和特异性。
可以使用引物设计软件或进行体外实验来检查引物之间的互补性。
5. 引物的合成合成引物时,可以选择商业合成或自行合成。
在合成引物时,需要注意以下几个问题: - 引物的纯度要求较高,以避免污染对扩增结果的影响。
- 引物的浓度要适中,一般在10-100 μM之间。
引物设计实例以下是一个全基因扩增引物设计的实例:1.扩增目标:整个基因组的扩增。
PCR引物设计基本思路1.根据实验需要,确定需要扩增的DNA序列,并知道其CDS区序列(编码结构基因区,即从起始密码子区至终止密码子区)ncbi网站查询RBS149..153/gene="eryF"CDS158..1372/gene="eryF"1ggatcccgat cgtgtcggag gaagaggcca agtcgcgccg ccccgaccag ctgctggtgc61tgccctggat ctaccgcgac gggttcgtcg aacgcgagca ggagttcctc gctggcggcg121gaaagctgat cttcccccta ccccgactgg aagtcgtatg acgaccgttc ccgatctcga181aagcgactcc ttccacgtcg actggtaccg cacctacgcc gagctgcgcg agaccgcgcc241ggtgacgccg gtgcgcttcc tcggccagga cgcgtggctg gtcaccggct acgacgaggc301gaaggccgcg ctgagcgacc tgcgcctgag cagcgacccg aagaagaagt acccgggcgt361ggaggtcgag ttcccggcat acctcggttt ccccgaggac gtgcggaact acttcgccac421caacatgggc accagcgacc cgccgaccca cacccggctg cgcaagctgg tgtcgcagga481gttcaccgtc cgccgcgtgg aggcgatgcg gccccgcgtc gagcagatca ccgcggagct541gctcgacgag gtgggcgact ccggcgtggt cgacatcgtc gaccgcttcg cccacccgct601gcccatcaag gtcatctgcg agctgctcgg cgtcgacgag aagtaccgcg gggagttcgg661gcggtggagc tcggagatcc tggtcatgga cccggagcgg gccgaacagc gcgggcaggc721ggccagggag gtcgtcaact tcatcctcga cctggtcgag cgccgccgca ccgagcccgg781cgacgacctg ctgtccgcgc tgatcagggt ccaggacgac gatgacggtc ggctcagcgc841cgacgagctg acctccatcg cgctggtgct gctgctggcc ggtttcgagg cgtcggtgag901cctcatcggg atcggcacct acctgctgct cacccacccg gaccagctcg cgctggtgcg 961gcgggacccg tcggcgctgc ccaacgccgt cgaggagatc ctgcgctaca tcgctccgcc 1021ggagaccacc acgcgcttcg ccgcggagga ggtggagatc ggcggtgtcg cgatccccca 1081gtacagcacg gtgctggtcg cgaacggcgc ggccaaccgc gacccgaagc agttcccgga 1141cccccaccgc ttcgacgtca cccgcgacac ccgcggccac ctgtcgttcg ggcagggcat 1201ccacttctgc atgggccggc cgctggccaa gctggagggc gaggtggcgc tgcgggcgct 1261gttcggccgc ttccccgctc tgtcgctggg aatcgacgcc gacgacgtgg tgtggcggcg 1321ttcgctgctg ctgcggggca tcgaccacct accggtgcgg ctcgacggat gagcacctgg 1381ctgcggcggt tcggtcctcc cgtcgagcac cgggcgcggc tggtgtgctt cccgcacgcg 1441ggagccgcgg ccgactccta cctcgacctc gcgcgcgcct tggcgcccga gatcgacgtg 1501cacgccgtgc agtacccggg gcgccaggac cgccgcgacg aggagcccct gggcaccgcc 1561ggcgagatcg ccgacgaggt ggccgccgtg ctgcgcgcgt cgggcggcga cggcccgttc 1621gccctgttcg ggcacagcat gggcgcgttg atcgcctacg agacggcgcg caggctcgaa 1681cgcgagcccg gcggcgggcc gctgcggctg ttcgtgtccg ggcagaccgc cccgcgcgtg 1741cacgagcgcc gcaccgacct gcccggcgac gacggtctgg tggacgagct gcgccggctc 1801ggcaccagcg aggcggcgct ggccgacgag gccctgctcg ccatgtcgct gccggtgctg 1861cgcgccgact accgcgtgct gcgctcctac gcctgggcgg acggaccacc gctgcgggcc 1921ggcatcaccg cgctgtgcgg cgacgccgac ccgctgaccg cgaccgggga cgccgagcgc 1981tggttgcagc actcggtcat ccccggccgg accaggacct tccccggcgg gcacttctac 2041ctgggtgaac aggtcaccga ggtggccggt gccgtgcgcc gggacctgct acgcgccggg 2101cttgcgggct gaggcgatca cgaagtcgag cgcgggcagc tcgcccttca tgcccgagtc 2161gctggtcagc gaccgcttga cctggctgta gaagagcctg ctcacgctct tcttgaacga2221ctcgtcctgc aggcacctgg ctg2.选择所需的载体,确定合适的酶切位点。
全基因扩增的引物设计步骤全基因扩增是一种常用的基因组测序方法,它可以同时扩增整个基因组或某些特定区域的DNA序列。
在进行全基因扩增前,需要设计适合的引物。
下面将详细介绍全基因扩增的引物设计步骤。
一、确定目标基因组或区域首先需要确定要扩增的目标基因组或区域。
这可以通过文献资料、数据库查询、实验经验等方式获得。
在确定目标基因组或区域时,需要考虑以下几个方面:1. 目标基因组或区域的大小:全基因扩增需要设计一对引物,其长度通常为20-30个碱基对,能够覆盖目标序列的全部或大部分区域。
2. 目标序列的GC含量:GC含量高于50%或低于30%时,引物设计会更具挑战性。
3. 目标序列中是否存在重复序列:重复序列会使得引物无法特异性地结合到目标DNA上,从而导致非特异性扩增。
二、获取参考序列获取参考序列是进行引物设计的关键步骤之一。
常用的参考序列包括已知基因组测序数据、转录本数据和EST(表达顺反转录本)序列。
在获取参考序列时,需要注意以下几个方面:1. 确定参考序列的来源:不同来源的参考序列可能存在差异,需要根据实际情况选择合适的来源。
2. 确定参考序列的版本:同一基因组或转录本可能存在多个版本,需要选择最新、最全面、最准确的版本作为参考序列。
3. 确定参考序列的长度:通常选择包含目标区域或基因组全部或大部分区域的参考序列。
三、引物设计引物设计是全基因扩增中最重要和最复杂的步骤之一。
引物设计需要满足以下几个要求:1. 引物长度:引物长度通常为20-30个碱基对,太短会导致特异性不足,太长则会影响扩增效率。
2. 引物特异性:引物应该特异性地结合到目标DNA上,避免非特异性扩增。
可以通过BLAST等软件进行引物特异性检测。
3. 引物Tm值:引物Tm值应该在50-65℃之间,过高或过低都会影响扩增效率。
4. 引物末端结构:引物末端应该避免出现稳定的二聚体结构或自身互补结构,以免影响扩增效率。
5. 引物位置:引物应该位于目标序列的两端,避免扩增出不必要的片段。
详尽的引物设计⼼得及具体流程操作本⽂作者:张慧慧(长沙湘雅附⼆)本⽂系参加解螺旋段⼦⼿招募作品查看更多段⼦⼿招募详情,请回复“悬赏”1 克隆载体: 表达载体⼀般需要的是编码序列(起始密码⼦ATG到终⽌密码⼦TAA/TGA/TGA的序列),也就是NCBI的 coding sequence(CDS)。
⼀般情况是全长序列,直接取ATG开始的20bp为上游引物,TAA/ TGA/ TAG端的20bp的反向互补序列反向引物。
根据载体的酶切位点、读码框的要求在引物的5’端碱基即可。
要注意的是: ①选⽤的酶切位点在编码序列上是否存在,存在就选择其他酶切位点或者选⽤同尾酶。
②载体的标签实在插⼊序列的上游还是下游,在上游编码序列的终⽌密码就要留,在下游编码序列的终⽌密码就要去掉。
③读码框是否正确,有些酶切位点会破坏插⼊序列的读码顺序,这个时候在引物上添加碱基使其正常读码即可。
例如构建EGFP-C1-P53质粒。
① P53序列 绿⾊表⽰选取的引物位置(EGFP-C1的GFP标签在插⼊序列的上游,所以终⽌密码保留。
) 引物序列是:上游引物(与绿⾊标⽰的序列⼀致)5'-ATGGAGGAGCCGCAGTCAGA-3';下游引物(与绿⾊标⽰的序列反向互补)5'-TCAGTCTGAGTCAGGCCCTT-3' ②载体多克隆位点(MCS)分析 我选择酶的原则是价格便宜,常⽤的酶,例如XhoI/BamHI/HindIII等,这样的酶在很多载体中都会有,有时候可以通⽤。
分析p53的序列中是否有XhoI/BamHI两个酶切位点,结果是没有,那就可以放⼼的⽤这两个酶了。
于是引物可以变成 上游引物5’-CTCGAGATGGAGGAGCCGCAGTCAGA-3’(XhoI) 下游引物5’-GGATCCTCAGTCTGAGTCAGGCCCTT-3’(BamHI) 酶在发挥作⽤的时候要有个保护碱基,我认为就是给它⼀个空间让它发挥作⽤,保护碱基在百度百科可以查到,于是引物就会变成 上游引物5’-ccgCTCGAGATGGAGGAGCCGCAGTCAGA-3’ 下游引物5’-cgGGATCCTCAGTCTGAGTCAGGCCCTT-3’③读码分析 XhoI的序列CTC GAG与载体的读码框不⼀致,载体的读码是 TCT CGA GCT,当⽤XhoI/BamHI双酶切载体时,最后的CT需要插⼊序列的AT来代替,就会使插⼊的序列移码,这时候,只要在插⼊序列ATG的前⾯加CT即可,所以引物序列就变成上游引物5’-ccgCTCGAG CTATGGAGGAGCCGCAGTCAGA-3’下游引物5’-cgGGATCCTCAGTCTGAGTCAGGCCCTT-3’ 所以当你给公司发引物序列时就是上游引物5’-ccgCTCGAG CTATGGAGGAGCCGCAGTCAGA-3’下游引物5’-cgGGATCCTCAGTCTGAGTCAGGCCCTT-3’ 因为是全长序列,就表⽰引物已经定了,没有选择。
PCR引物设计流程(以扩增鹅PHIP基因编码区序列为例)一.流程图二.确定模板1.确定模板来源物种近亲物种:原鸡,绿头野鸭,鸽,雀,鹦鹉,蜂鸟等常用物种:灵长类(人,大猩猩,恒河猴),哺乳类(大鼠,小家鼠,猪,牛,羊,狗),爬行类(鳄,龟),两栖类(蛙,蟾蜍),鱼类(斑马鱼,亚马逊帆鱼)一般在每一类常用物种中选择一个物种,在近亲物种中选择2种以上作为模板。
如,扩增鹅PHIP基因选择以下物种序列为引物设计模板:鸡,鸭,人,小鼠,蟾蜍,斑马鱼。
2.利用NCBI得到各物种需扩增基因的模板序列A.进入NCBI主页/,选定搜索范围为“Gene”,关键词为“PHIP”,得到如下图搜索结果(也可在关键词中包含物种名,如“PHIP Anser”,物种的英文名和拉丁学名在搜索时都可使用)。
B.点击所需物种的PHIP基因,进入该基因的报告页面(以人PHIP基因为例)。
基因报告页面中部Refseq条目中显示该基因在NCBI中的参考序列,该条目下可得到mRNA序列。
如下图。
另,关于RefSeq条目的相关名词解释参考/refseq/about/。
C.需注意:对于同一基因的mRNA可能具有不同长度的剪切异构体,选择模板时不同物种应尽量选择同一异构体(一般选择最长的异构体)。
D.如需得到该基因所在基因组的序列信息(如扩增启动子区域时),在基因报告页面上部Genomic regions,transcripts,and products 条目下,点击Go to nucleotide选项下FASTA按钮可进入基因组(组装)序列页面。
E.在基因组(组装)序列页面中,默认仅显示跳转前基因的序列,在Change region show 条目中修改设置为Whole sequence得到基因组序列,在Send选项下保存即可。
3.整理下载的模板序列三.寻找保守区域保守区域的意义:基因的保守区域是指不同来源的同一个基因在某些区域没有差别或者差别很小。
在扩增基因序列时,选择在保守区域设计引物能够更有效的扩增未知的基因。
因此,在引物设计前需先找出目的序列中的保守区域。
在引物设计时,则首先应在保守区域内设计引物。
1.制作mega标准序列A.用ClustalX软件打开整理好的TXT文件(菜单File →Load Sequences),然后在菜单Alignment选项下选择Do Complement Alignment,此时将保存两种格式文件:.dnd和.aln(序列较长时耗时较长,需数分钟)。
B.将以上.aln文件用DAMBE软件打开(File→Open standard sequence file),注意选择恰当的序列类型。
打开后的文件可直接转存为.meg或.fas格式文件(File→Save or Convert Sequence Format)。
注1:此时在Sequence Info对话框应选择Binary选项,否则在转换格式时T碱基会被替换为U。
2.Mega分析同源性A.用Mega软件打开以上保存的.meg或.fas格式文件,新建一个序列对齐分析窗口(Align→Edit/BuildAlignment→Retrieve sequences from a file)。
B.在新窗口中以默认设置将序列集进行序列对齐分析(Alignment→Align by muscle(Codons)),结果保存为.fas文件(Data →Export Alignment)。
C.打开网址http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::boxshade进入在线软件BOXShade,在选择文件按钮下载入以上已对齐的模板.fas文件。
点击advanced options按钮展开选项,将默认设置进行如下图修改。
其余选项保持默认即可,也可根据实际需要进行调整。
设置完后点击Run提交任务。
注2:should sequence name be printed项的默认设置为YES,此时将把序列名同时打印。
需再输出的富文本文件中将字体全部改为中文字体,才能保持序列的对齐。
如需英文字体,此项可以改为no,序列名可以通过其他方式添加。
在软件输出结果的报告页面中保存.rtf格式的富文本文件,该文件可用Microsoft Word编辑。
3.保守区域的分析如下图,consenus行表示序列间的一致性,*号表示在序列间完全一致的碱基,.号表示在序列间高度相似的碱基,空格表示在序列间;consenus行之上每一行分别代表一个物种的PHIP基因序列,蓝色背景的碱基为在物种间保守的碱基。
首先观察consenus行,*号比例在50%以上且空格很少的区域可视作保守区域,具体分析中应灵活处理。
以PHIP基因为例,保守区域可划分为:190-1240bp,1260-1980bp,2000-2290bp,2540-4920bp,5340-5740bp。
注3:出现连续的长的不保守区域(大于数百bp),因为引物设计产物的最佳长度上限在1000左右。
此时可以只考虑近亲物种序列的保守性,降低保守区域的分析标准。
4.绘制引物设计示意图注4:对于PHIP基因,我们顺利的得到了保守性区域分析结果。
但是,对于某些进化较快的基因,保守性区域可能不足够用于设计引物。
此时,可以逐渐减少用于分析的远缘物种,采用渐进性的分析,直到得到能够设计引物的保守性区域。
注5:为什么是mega ?保守性区域的分析用其他软件(如DNAMAN)也可进行。
采用mega的原因在于其分析方法的可靠性更高,同时该软件在进化分析等中也非常常用,所以将mega可读序列的制作一并说明。
四.用Primer5 软件设计引物1.新建文件,导入模板确定一条序列为设计引物的模板序列。
本例中根据进化关系,选择鸭的PHIP基因序列为模板。
在Primer5软件中新建一个窗口(File →New →DNA Sequnce),将模板序列粘贴(ctrl+v)在窗口内(一般选择as is 表示粘贴原序列,也可根据需要粘贴反向序列等)。
2.设置参数,搜索引物在新序列窗口中点击按钮进入引物设计窗口,如下图。
在引物设计窗口中点击按钮进入引物搜索窗口,如下图。
引物类型为PCR Primers ,搜索类型一般选择成对引物,在搜索范围内限制搜索上下游引物的序列区域(参考前面的保守区域进行设置),产物长度,引物长度设置详见后续介绍。
搜索模式分为自动的Automatic和手动的Manual,在自动模式下引物搜索由严格标准往宽松标准执行,直至引物条数/对数达到设定值,其搜索参数设置如下图,搜索参数为在搜索过程中排除不合格引物的筛选条目;在手动模式下,可设置搜索的严格程度,并可修改搜索参数条目下的限定数值。
在引物搜索窗口设置好后点击按钮开始搜索,搜索结果如下图。
在搜索结果中可分别查看上下游引物或成对引物的情况。
Rating值代表系统对引物的(产物)打分,分值越高说明引物越优秀,但并不是绝对的评价标准。
引物具体信息在点击引物所在行后在引物设计窗口显示,其中:按钮为选择显示上游或下游引物信息;Seq No表示引物第一个碱基在序列中的位置;Length表示引物/产物长度;Tm表示引物/产物的熔解温度;GC%表示引物/产物的GC含量;△G表示引物结合模板过程的自由能;Activity表示引物与结合的效率;Degeneracy表示引物的多义性;Ta Opt表示Primer5软件建议的成对引物扩增时的最佳退火温度。
Hairpin表示引物可能形成的二级结构;Dimer表示引物自身可能形成的二聚体;False Priming引物与模板的错频;Cross Dime引物间可能形成的二聚体表示。
以上项目即为分析引物时的参考条目,引物设计的一些原则整理见后续。
参照引物设计的原则即可根据Primer5中上述参数对引物对进行选择。
另,对于一些引物,可能出现大多数指标都较为优秀,但个别指标严重影响扩增反应的情况。
这种引物可使用按钮,手动的对其进行修改以提高其性能。
3.引物设计原则1)引物长度:一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于75℃,即Taq酶的最适温度。
总的说来,每增加一个核苷酸引物特异性提高4倍,这样,大多数应用的最短引物长度为18个核苷酸。
引物长度的上限并不很重要,主要与反应效率有关。
由于熵的原因,引物越长,它退火结合到靶DNA上形成供DNA聚合酶结合的稳定双链模板的速率越小。
2)产物长度:扩增片段长度取决于酶的活性和保真性能。
对于普通Taq聚合酶,PCR产物一般不超过2000bp,而在100-1000bp范围效果较佳,超过1000bp的产物就可能出现产物量降低甚至无法扩增的情况。
对于其他酶,应根据相关说明使用。
3)引物Tm值:引物的Tm值,指的是50%的引物分子和其互补序列表现为双链时的温度,PCR时的退火温度一般都要比Tm值低5℃左右以确保有效退火。
引物的Tm值一般控制在55-65度, 一般需保证上下游引物的Tm值差不超过4-6度。
如果引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
许多软件可以对Tm进行计算,其计算原理各有不同,因此有时计算出的数值可能会有少量差距。
4)GC%:有效引物中(G+C)的比例为40-60%,GC含量太低导致引物Tm值较低,使用较低的退火温度不利于提高PCR的特异性,GC含量太高也易于引发非特异扩增。
上下游引物的GC含量不能相差太大。
GC%对扩增的影响主要通过Tm值来体现,当Tm值符合要求时,对于GC%不必做严格要求。
另,引物序列中同一碱基连续出现不应超过5个。
5)引物3’端:引物3’端是延伸开始的地方,最好不存在错配。
同时3’端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。
同时,3’端有形成二级结构/二聚体的可能对于PCR扩增的影响将大于5’端。
在扩增编码区域时,引物3′端最好不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率。
6)△G值:引物5′端和中间△G值应该相对较高,而3′端△G值较低。
△G值是指DNA双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G值越大,则双链越稳定。
应当选用5′端和中间△G值相对较高,而3′端△G值较低的引物,即3’端尽可能选用A或T,少用G或C。
引物3′端的△G值过高,容易在错配位点形成双链结构并引发DNA聚合反应(寡核苷酸3′末端最后5个核苷酸的稳定性小于-9 kcal/mol,通常就是专一性的探针或引物)。
7)引物的二级结构/二聚体:引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构,这种二级结构会因空间位阻而影响引物与模板的复性结合。