万有引力定律
- 格式:doc
- 大小:98.00 KB
- 文档页数:4
万有引力定律万有引力定律是牛顿于1687年提出的一条基本物理定律,描述了任何两个物体之间相互作用的引力力量。
它在物理学中占据着重要的地位,不仅解释了地球、行星和恒星等天体的运动规律,还有助于我们理解宇宙的起源和演化。
本文将介绍万有引力定律的基本原理、应用以及相关的重要概念。
一、基本原理万有引力定律基于牛顿的第一和第二定律,描述了物体之间引力的作用和相互关系。
根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
具体表达式为:F =G * (m1 * m2) / r^2其中,F表示物体之间的引力,G为万有引力常量,m1和m2分别为两个物体的质量,r为它们之间的距离。
这个定律揭示了物体之间引力的本质,无论是地球上的物体还是宇宙中的星体,都会受到引力的相互作用。
二、应用实例万有引力定律广泛应用于各个领域,包括天文学、航天工程、地理学等。
以下是一些以万有引力定律为基础的实际应用:1. 星体运动和行星轨道:万有引力定律解释了行星绕太阳的运动规律。
根据定律,行星受太阳引力的作用,沿着椭圆轨道绕太阳运动。
这也适用于其他星球和卫星等天体的运动。
2. 人造卫星轨道设计:在航天工程中,万有引力定律用于计算和预测人造卫星的轨道。
通过合理地选择轨道高度和速度,使卫星能够保持稳定轨道并完成其任务。
3. 地球重力和物体的自由落体:地球的引力场是万有引力定律在地球上的具体表现。
根据定律,物体在地球表面上自由落体时将受到地球的引力加速度作用,加速度约为9.8米/秒^2。
4. 天体测量和天文学研究:通过观测天体之间的引力相互作用,科学家可以测量它们的质量、距离和运动速度。
这对于研究宇宙的结构、演化和宇宙学参数的确定至关重要。
三、相关概念在理解万有引力定律时,还需要了解一些相关概念:1. 万有引力常量(G):它是连接引力与质量和距离的比例因子,其值为6.67430(15) × 10^-11 m^3·kg^-1·s^-2。
万有引力定律知识点万有引力定律(Universal Law of Gravitation)是牛顿在1687年发表的《自然哲学的数学原理》(Principia Mathematica Philosophiae Naturalis)中提出的重要物理定律之一、该定律描述了任何两个物体之间存在的引力。
1.引力的定义2.引力公式根据万有引力定律,两个物体之间的引力可以用以下的公式来表示:F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是一个常量,被称为万有引力常量,m1和m2分别表示两个物体的质量,r表示两个物体之间的距离。
3.万有引力常量4.引力的力学效应根据牛顿的第三定律,两个物体之间的引力大小相等,方向相反。
这意味着,一个物体对另一个物体施加的引力与另一个物体对第一个物体施加的引力大小相等。
根据万有引力定律,如果其中一个物体的质量增加,或者两个物体之间的距离缩小,引力将增大。
相反,如果其中一个物体的质量减小,或者两个物体之间的距离增加,引力将减小。
5.引力的运动效应根据万有引力定律,任何两个物体之间的引力不仅存在于静止状态下,还会影响它们的运动。
根据万有引力定律,如果两个物体之间存在引力,它们将相互吸引并朝向彼此移动。
这就是为什么我们在地球上可以感受到重力,因为地球对我们施加引力,将我们拉向地面。
6.引力的应用万有引力定律在多个领域都有广泛的应用。
在天文学和宇宙物理学中,它被用来解释天体之间的运动和行星、卫星轨道的形成。
在生物学和运动力学中,它被用来研究运动物体之间的相互作用和力的平衡。
在工程学中,它被用来计算和设计建筑物结构的稳定性和地震活动的影响。
7.万有引力定律的限制万有引力定律是牛顿提出的近似定律,适用于中等大小的物体和相对较小的距离。
当涉及到极端条件,如黑洞或超大质量天体时,它的适用性会受到限制。
在这些极端条件下,需要使用更复杂的理论,如爱因斯坦的广义相对论来描述引力。
万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。
本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。
一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。
牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。
二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。
根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。
通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。
世界各个国家的航天探索也依赖于万有引力定律。
比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。
此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。
三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。
通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。
在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。
此外,卫星之间也需要遵循万有引力定律的规律。
卫星在轨道上的相对位置和轨道调整都受到引力的影响。
科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。
四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。
通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。
卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。
万有引力定律公式大全
万有引力定律公式大全
1. 引力公式
万有引力定律公式:F = G(m1m2/r²)
其中,
F:两个物体之间的引力;
G:万有引力常量,约等于6.67×10^-11 N·m²/kg²;
m1、m2:分别为两个物体的质量;
r:为两个物体之间的距离。
2. 圆周运动公式
万有引力定律公式也可以用来描述行星绕太阳的圆周运动,其公式为:
F = m*v²/r = G(m1m2/r²)
其中,
m:为行星的质量;
v:为行星绕太阳的线速度;
r:为行星到太阳的距离;
m1、m2:分别为行星和太阳的质量。
3. 行星运动周期公式
行星绕太阳的运动周期公式为:
T² = (4π²r³)/(GM)
其中,
T:为行星绕太阳一周的时间;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
4. 轨道速度公式
行星绕太阳的轨道速度公式为:v = (GM/r)¹/²
其中,
v:为行星绕太阳的速度;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
5. 天体自转周期公式
天体自转周期公式为:
T = 2π(r/v)
其中,
T:为天体的自转周期;
r:为天体的半径;
v:为天体表面的线速度。
以上就是万有引力定律公式大全,每一项公式都有其具体的物理含义和数学表达式,对于物理学或天文学研究者或爱好者都有着极高的参考价值。
万有引力定律万有引力定律(Universal Law of Gravitation)是由英国物理学家艾萨克·牛顿(Isaac Newton)在17世纪末提出的一套基本理论。
该定律描述了质点间相互作用的引力,并成为了经典物理表达引力的基础,直到爱因斯坦在20世纪提出了相对论,引力被重新解释为时空弯曲的结果。
万有引力定律是牛顿力学的基石之一,对于理解宇宙和物理现象起到了重要作用。
根据万有引力定律,任何两个物体之间都存在着相互吸引的力,这种力的大小与两个物体的质量成正比,与距离的平方成反比。
具体来说,如果两个物体的质量分别为m1和m2,它们之间的距离为r,那么它们之间的引力F可以用下式表示:F =G * (m1 * m2) / r^2其中,G是一个常数,被称为万有引力常数。
万有引力常数的值约为6.67430 × 10^(-11) N·(m/kg)^2。
通过万有引力定律,我们可以解释许多自然界中的现象。
例如,地球对物体的吸引力就可以用该定律来描述。
在我们日常生活中,我们经常可以观察到物体受重力作用的例子,比如当我们将一颗苹果从树上摘下来时,它会受到地球的引力作用而落到地上。
除了解释地球上的现象外,万有引力定律还能帮助我们了解宇宙的结构和运动。
根据这一定律,行星之间的引力决定了它们的轨道形状和运动方式。
例如,地球绕太阳运动的轨道是椭圆形,而不是圆形。
这是因为太阳对地球的引力是向心力,使得地球绕着它进行椭圆轨道运动。
万有引力定律还可以解释天体运动中的其他现象,如月球绕地球运动和天体潮汐现象等。
通过对质点的引力相互作用的研究,科学家们不仅能够解释这些现象,还能够对它们进行精确的预测和推断。
尽管牛顿的万有引力定律在描述常见物体之间的引力时非常准确,但它在描述高速运动和极强引力场下的引力时有一些局限性。
在这些情况下,爱因斯坦的广义相对论理论会更加适用。
广义相对论认为引力是由物体在时空中弯曲而产生的,可以更准确地描述引力的行为。
万有引力定律万有引力定律是牛顿在17世纪提出的一项重要物理定律,它揭示了物体之间的引力相互作用规律。
本文将从定律的内容、应用及历史背景等方面进行探讨,以便更好地理解和应用这一定律。
一、定律内容万有引力定律可以简述为:两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
具体表达为:F =G * (m1 * m2) / r^2其中F表示物体之间的引力大小,G为一个恒定值,m1和m2分别是两个物体的质量,r为它们之间的距离。
该定律揭示了物体间引力的本质,即所有物体之间都存在一种相互吸引的力。
不论是天体间的引力,还是地球上物体的引力,都可以用这个定律来描述和计算。
二、应用1. 行星运动万有引力定律为解释行星运动提供了基础。
根据该定律,行星绕太阳运动的轨道是椭圆形,太阳位于椭圆焦点的一个焦点上。
同时,行星离太阳的距离越近,引力越大,行星运动的速度就越快。
2. 飞行物体轨迹万有引力定律也可用于描述飞行物体的轨迹。
例如,火箭发射后离地球越远,引力越小,轨迹就会变成抛物线或者双曲线。
同时,不同行星对飞船的引力大小也会影响其轨迹,这在宇宙探索中具有重要意义。
3. 重力加速度万有引力定律也可用于计算地球上物体的重力加速度。
地球的质量和半径已知的情况下,可以根据定律计算物体在地球表面上的重力加速度。
这对于研究物体在不同引力环境下的运动具有重要意义。
三、历史背景万有引力定律的提出是在牛顿看到苹果从树上落下的时候。
他开始思考为什么苹果会落下,而不是飘浮在空中。
通过对地球上物体运动的观察和测量,牛顿总结出了万有引力定律,并将其公式化。
万有引力定律的提出对于现代物理学的发展起到了重要作用。
它不仅解释了行星运动和地球上物体的重力现象,还为后来的科学家提供了探索宇宙的基本法则。
同时,该定律也激发了更多关于引力和宇宙起源的研究。
结论万有引力定律是牛顿物理学的重要组成部分,它揭示了物体间引力相互作用的规律。
通过应用该定律,我们可以解释和预测宇宙中各种物体间的相互作用。
万有引力定律编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
[1] 万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适的万有引力定律表示如下:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
中文名万有引力定律外文名Law of universal gravitation 表达式F=(G×M₁×M₂)/R²提出者艾萨克·牛顿提出时间1687年应用学科数学、自然哲学、物理学、自然学等适用领域范围物理学、自然学等推理依据编辑伽利略在1632年实际上已经提出离心力和向心力的初步想法。
布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。
一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。
根据1684年8月~10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段.·牛顿从1665年至1685年,花了整整20年的时间,才沿着离心力—向心力—重力—万有引力概念的演化顺序,终于提出“万有引力”这个概念和词汇。
·牛顿在《自然哲学的数学原理》第三卷中写道:“最后,如果由实验和天文学观测,普遍显示出地球周围的一切天体被地球重力所吸引,并且其重力与它们各自含有的物质之量成比例,则月球同样按照物质之量被地球重力所吸引。
另一方面,它显示出,我们的海洋被月球重力所吸引;并且一切行星相互被重力所吸引,彗星同样被太阳的重力所吸引。
由于这个规则,我们必须普遍承认,一切物体,不论是什么,都被赋与了相互的引力(gravitation)的原理。
万有引力定律简单理解万有引力定律是牛顿在17世纪首次提出的一个重要定律,它描述了物体之间的引力相互作用。
这个定律的简单理解是,任何两个物体之间都存在着引力,这个引力的大小与两个物体的质量有关,与它们之间的距离的平方成反比。
根据万有引力定律,任何两个物体之间的引力大小可以通过以下公式计算:F = G * (m1 * m2) / r^2。
其中,F表示引力的大小,G 是一个常数,m1和m2分别表示两个物体的质量,r表示它们之间的距离。
万有引力定律的一个重要应用是解释行星运动。
根据这个定律,太阳对地球的引力使得地球绕太阳运动。
同时,地球对其他天体也产生引力,使得它们保持在它们的轨道上。
除了行星运动,万有引力定律还可以解释其他一些现象。
比如,当你把一个物体抛向空中时,它会受到地球的引力作用而下落。
同样地,当你抛出一个物体时,它会在空中做抛物线运动,这是因为它同时受到地球的引力和初速度的影响。
万有引力定律的一个重要特点是它是普适的,即适用于任何两个物体之间的引力相互作用。
无论是两颗星球之间的引力,还是一个苹果掉落到地面上的引力,都可以用这个定律来描述。
在实际应用中,万有引力定律有很多重要的应用。
例如,它可以用来计算行星的轨道、卫星的运动轨道、彗星的轨道等。
它还可以用来解释地球上物体的重量,因为物体的重量实际上是受到地球引力的作用。
虽然万有引力定律是一个简单的定律,但它对我们理解宇宙的运动和相互作用有着重要的意义。
它不仅帮助我们解释了很多天文现象,还为我们提供了一种计算物体之间相互作用的工具。
正是因为有了万有引力定律,我们才能够更好地理解和研究宇宙的奥秘。
万有引力定律
课时计划:2节累计课时:授课时间:月日授课类型:讲授课
第二课时
知识目标
1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解;
2、使学生了解并掌握万有引力定律;
3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).
能力目标
1、使学生能应用万有引力定律解决实际问题;
2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标
1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用万有引力定律的过程中应多观察、多思考.
教学难点:万有引力定律的应用
教学重点:万有引力定律
教学建议
万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.
教学过程
(一)新课教学(20分钟)
1、引言
展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:
十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.
伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:
(1)牛顿是怎样研究、确立《万有引力定律》的呢?
(2)《万有引力定律》是如何反映物体间相互作用规律的?
以上两个问题就是这节课要研究的重点.
2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法.
苹果在地面上加速下落:(由于受重力的原因):
月亮绕地球作圆周运动:(由于受地球引力的原因);
行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)
牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.
3、引入课题.
板书:第二节、万有引力定律
(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)
(2)万有引力定律:宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书)
式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).
(二)应用(例题及课堂练习)
学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)
例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?
解:由万有引力定律得:
代入数据得:
通过计算这个力太小,在许多问题的计算中可忽略
例题2.已知地球质量大约是,地球半径为km,地球表面的重力
加速度.
求:
(1)地球表面一质量为10kg物体受到的万有引力?
(2)地球表面一质量为10kg物体受到的重力?
(3)比较万有引力和重力?
解:(1)由万有引力定律得:
代入数据得:
(2)
(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.
(三)课堂练习:
教师请学生作课本中的练习,教师引导学生审题,并提示使用万有引力定律公式解题时,应注意
因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.
(四)小结:
1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.
2、应用万有引力定律公式解题,值选,式中所涉其它各量必须取国际单位制.
(五)布置作业(3分钟):教师可根据学生的情况布置作业
第二课时
典型例题
星体质量的求解
例1 已知地球表面的重力加速度为,地球半径为,万有引力恒量为,用以上各量表示,
地球质量为是多少?
解:由
得:
星体密度的求解
例2 已知地球表面的重力加速度为,地球半径为,万有引力恒量为,如果不考虑地球自转的影响,用以上各量表示,地球的平均密度是多少?
解:
由万有引力定律得:
得:
证明星体密度与周期平方乘积为常量
例3 行星的平均密度是,靠近行星表面的卫星的周期是T,试证明为一个常数.
分析:将行星看作一个球体,卫星绕行星做匀速圆周运动的问心力由万有引力提供.
解:设半径为R,则密度为质量M与体积之比:
即:
对卫星,万有引力等于向心力
所以:
即:
因为G为引力常量,所以是一个对任何行星都适用的常数.
点评:从本题结论可以看出,若能观察到某行星附近的卫星运行周期,我们就可以估算出该行星的密度.
扩展资料
万有引力定律的发现过程
自哥白尼建立日心说到开普勒提出行星运动三定律,行星运动的基本规律已被发现,给进一步从动力学方面考察行星的运动提供了条件.到17世纪后半期,已有一些学者,其中包括著名物理学家胡克。
认为天体之间存在着相互作用的引力,行星的运动是由太阳对它们的引力引起的。
胡克等人甚至推测到太阳对行星的引力的大小跟行星与太阳之间的距离的平方成反比、但是他们都不能证明行星所做的椭圆运动是平方反比律的结果。
对引力大小的数量级也一无所知。
1684年,这个问题在英国皇家学会争论颇为激烈,天文学家哈雷和数学家雷恩都不能解决这个疑难,胡克虽然声称他已得解,却拿不出一个公式.同年8月,哈雷带着这个问题来请教牛顿,才知道牛倾已经解决了这个问题。
在哈雷的敦促下,牛顿于1684年12月写出了了《论运动》一文,阐明了他在地面物体动力学和天体力学方面获得的成就。
1687年,他又发表了著名的《自然哲学的数学原理》,全面地总结了他的研究成果,他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证.这些论证对于在物理理论中已经确立的定律,新的假说、实验观测和理论推导之间的相互作用,提供了一个极好的范例.研究牛顿留给人们的文献可以看到,他发现万有引力定律的思路大体如下:
(1)牛顿首先证明了,一个运动物体,如果受到一个指向固定中心的净力作用,不论这个力的性质和大小如何,它的运动一定服从开普勒第二定律(即等面积定律);反过来,行星运动都服从开普勒第二定律,它们就都受到一个向心力时作用.
(2)牛顿又证明,一个沿椭圆轨道运动的物体,如果受到指向椭圆焦点的向心力,这个力一定跟物体与焦点的距离的平方成反比.
(3)牛顿认为,行星所受的向心力来源于太阳的引力;卫星所受的向心力来源于行星的引力而地球吸引月球的引力,跟地球吸引树上的苹果和任何一个抛出的物体时显示出来的重力,是同一种力.这就是说,天体的运动跟地面上物体的运动,有着共同的规律,地球重力,也是随着与地心距离的增大按平方反比律而减弱的,牛顿通过计算证明,由于月球与地球的距离是地球半径的60倍,月球轨道运动的向心加速度应该等于地面上重力加速度的1/3600。
这就是著名的月地检验,它跟实际测量的结果符合得相当好.
(4)牛顿根据他自己提出的作用和反作用定律,推论引力作用是相互的地球作用在质量是的物体上的引力大小恰好等于质量为的物体作用在地球的引力.
(5)在一定的地点,石块所受的重力随石块的质量而增加,即与成正比,.另一方面,
如果行星的质量改变,石块所受的重力也必将随之而改变.也就是说,如果石块与地球的距离
不变,不只有与成正比,而且有与成正比.
习题精选
1、地球质量约为火星质量的9倍,地球半径约为火星半径的2倍,那么在地球表面重力为6000N 的人到火星表面上的体重变为_____________。
2、地球半径为,在离地面高处和离地面高处重力加速度之比为_____________。
3、地球表面重力加速度为,地球半径为,万有引力恒量为,则地球平均密度的估算式是_____________。
4、月球表面重力加速度只有地球表面重力加速度的1/6,一根绳子在地球表面能拉着3kg的重
物产生最大为的竖直向上的加速度,,将重物和绳子均带到月球表面,用该绳子能使重物产生沿月球表面竖直向上的最大加速度为:
A、B、 C、 D、
5、天文观察到某行星线速度为,离太阳距离,则可知太阳质量为____________,已知地球
绕太阳公转线速度约30km/s,轨道半径约,可知太阳质量约为_____________kg(1位有效数字)
6、火星的半径是地球半径的一半,其质量是地球质量1/9,一宇航员的质量是72kg,则他在火星上所受的重力是多大?这个宇航员在地球上最多能举起100kg的物体,那么他在火星上最多能举起质量多大的物体?
答案:
1、8000/3N
2、
3、
4、C
5、,2、0×1030kg
6、320N,225kg。