第3章_离散时间信号的傅里叶分析_3.3离散时间傅里叶变换与离散时间非周期信号的频谱
- 格式:ppt
- 大小:126.00 KB
- 文档页数:18
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
第三章离散时间信号的傅里叶变换课程:数字信号处理目录第三章离散时间信号的傅里叶变换 (3)教学目标 (3)3.1引言 (3)3.2傅里叶级数CFS (4)3.2.1傅里叶级数CFS定义 (4)3.2.2傅里叶级数CFS性质 (6)3.3傅里叶变换CFT (7)3.3.1傅里叶变换CFT定义 (7)3.3.2傅里叶变换CFT的性质 (8)3.4离散时间信号傅里叶变换DTFT (9)3.4.1离散时间信号傅里叶变换DTFT定义 (9)3.4.2离散时间信号傅里叶变换的性质 (10)3.5周期序列的离散傅里叶级数(DFS) (14)3.5.1周期序列的离散傅里叶级数的定义 (14)3.5.2周期序列的离散傅里叶级数的性质 (18)3.6离散傅里叶变换(DFT) (20)3.6.1离散傅里叶变换(DFT) (20)3.6.2离散傅里叶变换的性质 (23)3.7CFS、CFT、DTFT、DFS和DFT的区别与联系 (25)3.8用DFT计算模拟信号的傅里叶分析 (28)3.9实验 (30)本章小结 (32)习题 (33)参考文献: (36)第三章离散时间信号的傅里叶变换教学目标本章讲解由时域到频域的傅里叶变换,频域观察信号有助于进一步揭示系统的本质,对于某些系统可以极大的简化其设计和分析过程。
通过本章的学习,要理解连续时间信号的傅里叶级数和傅里叶变换的和离散时间信号基本概念、性质和应用;了解一些典型信号的傅里叶变换;理解连续时间信号的傅里叶级数(CFS)、连续时间信号的傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT)它们相互间的区别与联系;掌握傅里叶变换的参数选择,以及这些参数对傅里叶变换性能的影响;了解信号处理中其它算法(卷积、相关等)可以通过离散傅里叶变换(DFT)来实现。
3.1引言一束白光透过三棱镜,可以分解为不同颜色的光,这些光再通过三棱镜,就会得到白光。
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。