§5-6 离散时间傅里叶变换----DTFT
- 格式:pdf
- 大小:186.49 KB
- 文档页数:22
dft变换,z变换,离散傅里叶三者变换关系离散傅里叶变换(DFT)、Z变换和离散傅里叶变换(DTFT)是数字信号处理领域中常用的数学工具。
尽管它们的数学形式和实际应用略有不同,但它们之间存在紧密的联系。
首先我们来看离散傅里叶变换(DFT)。
离散傅里叶变换是一种将离散信号转换为频域表示的数学工具。
对于一个离散时间序列x(n),DFT 将其表示为一组离散频谱X(k),其中k表示频域中的离散频率。
DFT通过计算输入序列x(n)和一组复数旋转因子的点乘来实现。
在数学上,DFT的表达式如下:N-1X(k) = Σx(n)*e^(-j2πkn/N)n=0其中,N表示离散时间序列的长度,k表示离散频率的编号。
接下来我们来看Z变换。
Z变换是一种将序列转换为复数域表示的数学工具。
Z变换通过对序列x(n)中的每个样本进行加权求和,并使用复数变量Z来表示其变换结果。
Z变换的数学表达式如下:∞X(Z) = Σx(n)Z^(-n)n=0其中,X(Z)表示Z域中的复数函数,x(n)表示离散时间序列的样本值,Z表示复杂变量。
离散傅里叶变换(DFT)和Z变换之间存在紧密的联系。
如果我们将离散时间序列x(n)看作是一个去掉复杂变量Z的Z变换结果,那么离散傅里叶变换(DFT)可以被视为离散傅里叶变换的特殊情况。
实际上,当变换的因子Z被设置为单位圆上的离散点时,离散傅里叶变换(DFT)和Z变换是等价的。
这时,离散傅里叶变换(DFT)可以用Z变换的形式表示:X(Z)|z=exp(-j2πk/N) = X(k)这个等式表示,当复数变量Z被设置为复数旋转因子z=exp(-j2πk/N)时,离散时间序列的Z变换结果X(Z)等于离散傅里叶变换(DFT)的离散频谱表示X(k)。
离散傅里叶变换(DFT)和离散傅里叶变换(DTFT)之间也存在联系。
离散傅里叶变换(DFT)可以被视为离散傅里叶变换(DTFT)的一种抽样。
离散傅里叶变换(DTFT)是将离散时间序列转换为连续频域表示的数学工具。
FS,FT,DFS,DTFT,DFT,FFT的联系和区别对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理。
学习过《高等数学》和《信号与系统》这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号。
FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,所以具有时域连续非周期对应频域连续非周期的特点。
FS和FT 都是用于连续信号频谱的分析工具,它们都以傅里叶级数理论问基础推导出的。
时域上连续的信号在频域上都有非周期的特点,但对于周期信号和非周期信号又有在频域离散和连续之分。
在自然界中除了存在温度,压力等在时间上连续的信号,还存在一些离散信号,离散信号可经过连续信号采样获得,也有本身就是离散的。
例如,某地区的年降水量或平均增长率等信号,这类信号的时间变量为年,不在整数时间点的信号是没有意义的。
用于离散信号频谱分析的工具包括DFS,DTFT和DFT。
DTFT是离散时间傅里叶变换,它用于离散非周期序列分析,根据连续傅里叶变换要求连续信号在时间上必须可积这一充分必要条件,那么对于离散时间傅里叶变换,用于它之上的离散序列也必须满足在时间轴上级数求和收敛的条件;由于信号是非周期序列,它必包含了各种频率的信号,所以DTFT对离散非周期信号变换后的频谱为连续的,即有时域离散非周期对应频域连续周期的特点。
当离散的信号为周期序列时,严格的讲,离散时间傅里叶变换是不存在的,因为它不满足信号序列绝对级数和收敛(绝对可和)这一傅里叶变换的充要条件,但是采用DFS(离散傅里叶级数)这一分析工具仍然可以对其进行傅里叶分析。
我们知道周期离散信号是由无穷多相同的周期序列在时间轴上组成的,假设周期为N,即每个周期序列都有N个元素,而这样的周期序列有无穷多个,由于无穷多个周期序列都相同,所以可以只取其中一个周期就足以表示整个序列了,这个被抽出来表示整个序列特性的周期称为主值周期,这个序列称为主值序列。
离散傅里叶变换离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT。
目录对换实例离散傅里叶变换的基本性质对换实例离散傅里叶变换的基本性质展开编辑本段对换实例傅里叶变换的变换对对于N点序列{x[n ]} 0 ≤ n < N ,它的离散傅里叶变换(DFT)为?x[k ] = N - 1Σn = 0 e - i 2 π–––––N n k x[n ] k = 0,1, …,N-1.其中e 是自然对数的底数,i 是虚数单位。
通常以符号F表示这一变换,即?x= Fx离散傅里叶变换的逆变换(IDFT)为:x[n ] = 1––N N - 1Σk = 0 e i 2 π–––––N nk ?x[k ] n = 0,1, …,N-1.可以记为:x = F -1 ?x实际上,DFT和IDFT变换式中和式前面乘上的归一化系数并不重要。
在上面的定义中,DFT和IDFT前的系数分别为1 和1/N。
有时会将这两个系数都改成1/ √––N,这样就有x = FFx,即DFT成为酉变换。
从连续到离散连续时间信号x(t) 以及它的连续傅里叶变换(CT)?x( ω)都是连续的。
由于数字系统只能处理有限长的、离散的信号,因此必须将x 和?x都离散化,并且建立对应于连续傅里叶变换的映射。
数字系统只能处理有限长的信号,为此假设x(t)时限于[0, L],再通过时域采样将x(t) 离散化,就可以得到有限长的离散信号。
设采样周期为T,则时域采样点数N=L/T。
x discrete (t) = x (t) N - 1Σn = 0 δ(t-nT) = N - 1Σn = 0 x (nT) δ(t-nT)它的傅里叶变换为?xdiscrete ( ω) = N - 1Σn = 0 x (nT)F δ(t-nT) = 1––T N - 1Σn = 0 x (nT)e - i 2 π n ω T这就是x(t)时域采样的连续傅里叶变换,也就是离散时间傅里叶变换,它在频域依然是连续的。