离散时间傅里叶变换
- 格式:ppt
- 大小:5.04 MB
- 文档页数:44
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
1、DTFT是离散时间傅里叶变换,DFT是离散傅里叶变换。
2、DTFT变换后的图形中的频率是一般连续的(cos(wn)等这样的特殊函数除外,其变换后是冲击串),而DFT是DTFT的等间隔抽样,是离散的点。
从表示中可以看出,其函数表示为X(k),而DTFT的函数表示为X(exp(jw))。
(这里主要突出DFT是DTFT的等间隔抽样,DTFT变化后的频率响应一般是连续的,DFT变换后的频率响应是离散的)3、DTFT是以2pi为周期的。
而DFT的序列X(k)是有限长的。
4、DTFT是以复指数序列{exp(-jwn)}的加权和来表示的,而DFT是等间隔抽样,既然是等间隔,那么间隔是多少呢?DFT里面有个重要的参数就是N,我们一般都会说,多少点DFT运算,这个点就是N(离散序列的长度),抽样间隔就是将单位元分成N个间隔来抽样,绕圆一周,(2*pi)/N是间隔(这个应该很明显吧,一个圆周是2*pi,分成N个等分,就像我们生日的时候切蛋糕一样)。
5、DTFT和DFT都能表征原序列的信息。
因为现在计算主要使用计算机,必需要是离散的值才能参与运算,因此在工程中DFT应用比较广泛,DFT还有一个快速算法,那就是FFT。
基本上你答了上面的5点,面试官至少会对你刮目相看的。
因为很多人对概念是很模糊的。
快速傅立叶变换(The Fast Fourier Transform,FFT)是离散傅立叶变换(Discrete Fourier Transform,DFT)的一种快速算法,它是库利(Cooley)和图基(Tukey)于1965年提出的。
FFT使DFT的次数由N^2减少到Nlog2(N)次,使DFT应用于实际变为现实,使DFT进一步得到完善。
1976年,S.Winograd等人提出一种新算法:Winograd快速变换(Winograd Fast Fourier Transform Algorithm),该算法是基于中国剩余定理提出的,比FFT的运算速度更快。
离散时间傅里叶变换对介绍离散时间傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中常用的一种变换方法,它将时域中的离散信号转换到频域中,通过分析信号在频域上的特性,可以揭示信号中隐藏的信息。
离散时间傅里叶变换对作为傅里叶变换对的一种形式,在数字图像处理、通信系统等领域有着广泛的应用。
一级标题DFT的定义离散时间傅里叶变换对将离散时间域序列x[n](n为整数)转换为离散频率域序列X[k](k为整数)。
其数学定义如下:其中,N为序列的长度,k为频率序列的索引。
DFT的计算复杂度较高,通常采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来加速计算。
DFT的性质DFT具有一些重要的性质,它们对于理解和应用DFT至关重要。
1.线性性质:DFT是线性的,即对信号的线性组合的DFT等于DFT的线性组合。
2.循环移位性质:对于输入信号x[n],将其向右循环移位m个单位,得到新的信号x_m[n]=x[(n-m) mod N],则x_m[n]的DFT等于x[n]的DFT乘以旋转因子的m次幂。
3.对称性质:当输入信号x[n]是实数序列时,其DFT具有共轭对称性,即X[k]=X^*[N-k]。
4.周期性质:对于周期为N的信号,其DFT为离散频率域上的周期函数,频率分辨率为1/N。
DFT的应用DFT在信号处理中有着广泛的应用,如下所示:1.频谱分析:通过计算信号的DFT,可以将信号转换到频域中,从而分析信号中各个频率成分的强度和相位,揭示信号的频域特性。
2.信号压缩:DFT可以将时域信号转换为频域信号,在频域中进行处理,然后再通过逆变换将频域信号转换为时域信号,实现信号的压缩。
3.滤波器设计:DFT可以用来设计滤波器,通过将滤波器的频率响应转换为时域响应,从而得到滤波器的系数。
4.信号恢复:通过对信号的部分采样数据进行DFT,可以恢复出信号的完整信息,实现信号的恢复。