离散时间傅里叶变换
- 格式:ppt
- 大小:7.09 MB
- 文档页数:76
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
离散时间傅里叶变换对介绍离散时间傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中常用的一种变换方法,它将时域中的离散信号转换到频域中,通过分析信号在频域上的特性,可以揭示信号中隐藏的信息。
离散时间傅里叶变换对作为傅里叶变换对的一种形式,在数字图像处理、通信系统等领域有着广泛的应用。
一级标题DFT的定义离散时间傅里叶变换对将离散时间域序列x[n](n为整数)转换为离散频率域序列X[k](k为整数)。
其数学定义如下:其中,N为序列的长度,k为频率序列的索引。
DFT的计算复杂度较高,通常采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来加速计算。
DFT的性质DFT具有一些重要的性质,它们对于理解和应用DFT至关重要。
1.线性性质:DFT是线性的,即对信号的线性组合的DFT等于DFT的线性组合。
2.循环移位性质:对于输入信号x[n],将其向右循环移位m个单位,得到新的信号x_m[n]=x[(n-m) mod N],则x_m[n]的DFT等于x[n]的DFT乘以旋转因子的m次幂。
3.对称性质:当输入信号x[n]是实数序列时,其DFT具有共轭对称性,即X[k]=X^*[N-k]。
4.周期性质:对于周期为N的信号,其DFT为离散频率域上的周期函数,频率分辨率为1/N。
DFT的应用DFT在信号处理中有着广泛的应用,如下所示:1.频谱分析:通过计算信号的DFT,可以将信号转换到频域中,从而分析信号中各个频率成分的强度和相位,揭示信号的频域特性。
2.信号压缩:DFT可以将时域信号转换为频域信号,在频域中进行处理,然后再通过逆变换将频域信号转换为时域信号,实现信号的压缩。
3.滤波器设计:DFT可以用来设计滤波器,通过将滤波器的频率响应转换为时域响应,从而得到滤波器的系数。
4.信号恢复:通过对信号的部分采样数据进行DFT,可以恢复出信号的完整信息,实现信号的恢复。
实验二 离散时间傅里叶变换一. 实验原理经由正,逆离散时间傅里叶变换表达的信号傅里叶表示式是信号分析的一个关键部分。
下面方程分别是分析方程和综合方程。
X(e jw )=∑x[n]e -jwn x[n]=1/2πωππωωd e e X n j j ⎰-)(类似地,当L TI 系统用于滤波的时候,作为冲击响应离散时间傅里叶变换的频率响应,提供了L TI 系统简洁的描述。
离散时间傅里叶变换X(e jw )是w 得周期复值函数,周期总是2π,并且基周期通常选在区间[],ππ-上。
在应用MA TLAB 时,可计算性是个问题。
对离散时间傅里叶变换DTFT 来说有两个问题: ① DTFT 的定义对无限长信号时有效的; ② DTFT 是连续变量ω的函数;在MA TLAB 中,任何信号向量必须是有限长度的,仅此就使第1点成为问题。
因此不可能使用MA TLAB 计算无限长信号的DTFT 。
有一个值得注意的例外情形,当能从变换定义是推导出解析式并只是计算它时,可以使用MA TLAB 计算无限长信号的DTFT 。
例如在x[n]=a n u[n],x[n]具有有理的DTFT 的情形下。
第二个问题是频率抽样问题。
MA TLAB 擅长有限网络点上计算DTFT 。
通常选取足够多的频率以使绘出的图平滑,逼近真实的DTFT ,对计算有利的最好选择是在(-π,π)区间上一组均匀隔开的频率,或者对共轭对称变换选择[0,π]区间。
采用上述抽样方法,DTFT 式变成X(e j k w)=X(e N k j/2π)=∑-=-1 0)/2(][L nnNkjenxπ,k=0,1,…,N-1DTFT的周期性意味着在-π≤ω<0区间上的数值是那些对k>N/2的数值。
因为上式是在有限数量的频率点ωk=2πk/N处计算,并在有限范围内求和,因此它是可计算的。
由于信号长度必须是有限的,这个求和式不适用于x【n】=a n u【n】的情形。
若是不考虑DFT的物理性质,而只注重于DTFT用样本,可计算的上式恰是N点离散傅里叶变换。