第二章 离散时间傅立叶变换(DTFT)
- 格式:ppt
- 大小:1.02 MB
- 文档页数:59
电 子 科 技 大 学实 验 报 告学生:项阳 学 号: 2010231060011 指导教师:邓建一、实验项目名称:离散时间傅里叶变换二、实验目的:熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。
三、实验容:1. 求下列序列的离散时间傅里叶变换(a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n =2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。
3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。
4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。
5. 已知连续时间信号为t a e t x 1000)(-=,求:(a) )(t x a 的傅里叶变换)(Ωj X a ;(b) 采样频率为5000Hz ,绘出1()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论;(c) 采样频率为1000Hz ,绘出2()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论。
四、实验原理:1. 离散时间傅里叶变换(DTFT)的定义:2.周期性:()j X e ϖ是周期为2π的函数(2)()()j j X e X e ϖϖπ+= 3.对称性:对于实值序列()x n ,()j X e ϖ是共轭对称函数。
*()()Re[()]Re[()]Im[()]Im[()]()()()()j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ϖϖϖϖϖϖϖϖϖϖ-----===-=∠=-∠4.线性:对于任何12,,(),()x n x n αβ,有1212[()()][()][()]F x n x n F x n F x n αβαβ+=+5.时移[()][()]()j k j j k F x n k F x n e X e e ωωω---==6.频移00()[()]()j n j F x n e X e ωωω-=7.反转(翻褶)[()]()j F x n X e ω--=[()]()()(),()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:五、实验器材(设备、元器件):PC机、Windows XP、MatLab 7.1六、实验步骤:本实验要求学生运用MATLAB编程产生一些基本的离散时间信号,并通过MATLAB的几种绘图指令画出这些图形,以加深对相关教学容的理解,同时也通过这些简单的函数练习了MATLAB的使用。
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
电 子 科 技 大 学实 验 报 告学生:项阳 学 号: 2010231060011 指导教师:邓建一、实验项目名称:离散时间傅里叶变换二、实验目的:熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。
三、实验容:1. 求下列序列的离散时间傅里叶变换(a) ()(0.5)()n x n u n =(b) (){1,2,3,4,5}x n =2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。
3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。
4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。
5. 已知连续时间信号为t a e t x 1000)(-=,求:(a) )(t x a 的傅里叶变换)(Ωj X a ;(b) 采样频率为5000Hz ,绘出1()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论;(c) 采样频率为1000Hz ,绘出2()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论。
四、实验原理:1. 离散时间傅里叶变换(DTFT)的定义:2.周期性:()j X e ϖ是周期为2π的函数(2)()()j j X e X e ϖϖπ+=3.对称性:对于实值序列()x n ,()j X e ϖ是共轭对称函数。
*()()Re[()]Re[()]Im[()]Im[()]()()()()j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ϖϖϖϖϖϖϖϖϖϖ-----===-=∠=-∠4.线性:对于任何12,,(),()x n x n αβ,有1212[()()][()][()]F x n x n F x n F x n αβαβ+=+5.时移[()][()]()j k j j k F x n k F x n e X e e ωωω---==6.频移00()[()]()j n j F x n e X e ωωω-=7.反转(翻褶)[()]()j F x n X e ω--=五、实验器材(设备、元器件):PC 机、Windows XP 、MatLab 7.1六、实验步骤:本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。
dtft公式DTFT公式DTFT全称为离散时间傅里叶变换,是数字信号处理中一种重要的分析工具。
DTFT可以将以时间为自变量的离散序列在频域上进行分析,其公式如下:$$X(\omega)=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n}$$其中,$x(n)$为离散时间域信号,$X(\omega)$为其对应的离散频率域信号,$\omega$为角频率。
在DTFT公式中,$e^{-j\omega n}$是傅里叶变换中的核函数,也被称为旋转因子。
旋转因子的频率为$\omega$,控制了离散序列在频域上的变化。
DTFT公式常被用于信号分析、信号滤波、通信系统设计等领域。
下面我们通过一些例子,来说明DTFT公式的应用。
例1:信号分析考虑如下的离散时间域信号:$$x(n)=\sin\left(\frac{\pi}{4}n\right),\quad-\infty<n<\infty$$应用DTFT公式,可以求出其离散频率域信号:$$\begin{aligned}X(\omega)&=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n}\\&=\sum_{n=-\infty}^{\infty}\sin\left(\frac{\pi}{4}n\right)e^{-j\omega n}\\ &=\frac{1}{2j}\left(e^{j\frac{\pi}{8}}-e^{-j\frac{\pi}{8}}\right)\sum_{n=-\infty}^{\infty}\left(e^{j\frac{\pi}{4}}\right)^n\delta(\omega-\frac{\pi}{4}-\frac{2\pi}{n})\\\end{aligned}$$上式中,$\delta(\omega)$为单位脉冲函数,$\delta(\omega-\omega_0)$表示在$\omega=\omega_0$时,函数值最大的单个脉冲。
z 变换与离散时间Fourier 1、z 变换2、离散时间3、序列的z Fourier 变换的关系4、离散系统的系统函数,系统的频率响应信号与系统的分析方法:时域分析方法 变换域分析方法连续时间信号与系统: Fourier Laplace离散时间信号与系统: z 变换离散时间信号与系统的分析方法2.1.1 z 变换的定义2.1 z 变换:z X )(其中成一个复平面,称为ωj e r z ⋅=(x z 反变换:其中,积分路径是在逆时针旋转的闭合围线。
在数字信号处理中,不需要用围线积分来求2.1.2 z 变换的收敛域对任意给定序列的所有z 值的集合称为z 变换公式的级数收敛的充要条件是满足绝对可和,对某一具体的使该不等式成立,这个域,收敛域内不能有极点。
n ∞=−∞∑2.1.3 4 种典型序列的除0 和∞两点是否收敛与n 1和n 2取值情况有关外,整个z 平面均收敛。
1. 有限长序列x (n ) 只在n 1≤n ()()z X z x n 其变换:即要求: ROC 至少为:1()()X z x n z −=0(0)x z +如果n 2 ≤0 n 1<0,n 2≤如果n 1≥0 n 1≥0,n 2> 0如果n 1< 0 <n 1<0,n 2 > 0 1100n n Roc ∴≥<当时, 当时, 因果序列的处收敛在∞处收敛的变换,其序列必为因果序列在工程中,人们感兴趣的主要是因果序列。
1()()n n X z x n ∞==∑2. 右边序列x (n ) 在n ≥n 1时有值,在2200n n Roc ∴≤>当时, 当时,2()()()n n n X z x n x n =−∞=−∞==∑∑3. 左边序列x (n ) 在n ≤n 2 时有值,在x x x x x R R R R z R −+−++∴≥<<<当时, 当时,0()()()nn n X z x n x n z ∞−=−∞==∑ Roc: 0≤前式 Roc: x R −后式4. 双边序列n 为任意值时x 例1:x (n )=δ(变换及收敛域。
五种傅里叶变换介绍傅里叶分析是一种将一个信号分解为其频率成分的技术。
傅里叶变换是傅里叶分析的数学工具,它将一个信号从时间域转换到频率域,并提供了各个频率成分的详细信息。
傅里叶变换在信号处理、图像处理、音频处理等领域都有广泛的应用。
在傅里叶变换中,有五种常见的变换方法:离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和快速傅里叶变换(DFT)。
在本文中,我们将详细介绍这五种傅里叶变换的原理、特点和应用。
离散傅里叶变换(DFT)离散傅里叶变换(Discrete Fourier Transform,DFT)是将一个离散信号从时域转换到频域的方法。
DFT通过计算信号在一组复指数函数上的投影来实现,其中这组复指数函数是正交的。
DFT的计算公式如下:X(k) = Σ x(n) * exp(-j * 2π * k * n / N)其中,X(k)表示频域上的信号,x(n)表示时域上的信号,N是信号的长度。
DFT的优点是计算结果精确,可以对任何离散信号进行处理。
然而,它的计算复杂度较高,需要O(N^2)次操作,对于较长的信号将会非常耗时。
快速傅里叶变换(FFT)快速傅里叶变换(Fast Fourier Transform,FFT)是一种高速计算DFT的算法。
FFT算法通过将一个长度为N的DFT转换为两个长度为N/2的DFT的操作,从而实现了计算速度的加快。
FFT算法的计算复杂度为O(NlogN),比DFT的O(N^2)速度更快。
因此,FFT在实际应用中更为常见。
FFT广泛应用于信号处理、图像处理、音频处理等领域。
连续傅里叶变换(CTFT)连续傅里叶变换(Continuous Fourier Transform,CTFT)是将一个连续信号从时域转换到频域的方法。
CTFT可以将一个连续信号表示为一组连续的频率分量。
CTFT的计算公式如下:X(ω) = ∫ x(t) * exp(-jωt) dt其中,X(ω)表示频域上的信号,x(t)表示时域上的信号,ω是角频率。