02二次根式的乘除法与混合运算
- 格式:doc
- 大小:431.09 KB
- 文档页数:8
二次根式的混合运算法则二次根式是数学中的一个重要概念,也是数学中常见的运算形式。
在二次根式的混合运算中,我们需要遵循一定的法则和步骤,以确保运算结果的准确性。
本文将介绍二次根式的混合运算法则,并通过实例进行说明。
一、二次根式的定义二次根式是指形如√a的数,其中a为非负实数。
在二次根式中,根号内的数称为被开方数,根号外的数称为系数。
二次根式可以进行加、减、乘、除等运算,但需要遵循一定的法则和步骤。
二、二次根式的混合运算法则1. 加法运算当二次根式相加时,要求被开方数相同,系数相加即可。
例如,√2 + √2 = 2√2。
2. 减法运算当二次根式相减时,同样要求被开方数相同,系数相减即可。
例如,√3 - √2 = √3 - √2。
3. 乘法运算当二次根式相乘时,可以将系数相乘,被开方数相乘并合并为一个二次根式。
例如,2√3 * 3√2 = 6√6。
4. 除法运算当二次根式相除时,可以将系数相除,被开方数相除并合并为一个二次根式。
例如,6√6 / 3√2 = 2√3。
5. 混合运算在二次根式的混合运算中,可以按照运算法则依次进行加、减、乘、除等运算。
需要注意的是,乘法和除法运算的优先级高于加法和减法运算。
三、实例分析为了更好地理解二次根式的混合运算法则,我们来看几个实例。
1. 实例一:计算√5 + √3 - √2的值。
根据加法运算法则,√5 + √3 = √5 + √3,再根据减法运算法则,√5 + √3 - √2 = √5 + √3 - √2。
2. 实例二:计算(2√6 - √2) * √3的值。
根据减法运算法则,2√6 - √2 = 2√6 - √2,再根据乘法运算法则,(2√6 - √2) * √3 = 2√18 - √6。
3. 实例三:计算(3√10 + 2√5) / √2的值。
根据加法运算法则,3√10 + 2√5 = 3√10 + 2√5,再根据除法运算法则,(3√10 + 2√5) / √2 = (3√10 + 2√5) / √2。
《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。
二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。
通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。
在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。
二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。
但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。
部分学生可能对法则的理解不够深入,在应用时容易出现混淆。
因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。
三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。
(2)能够正确进行二次根式的乘除混合运算,并化简结果。
2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。
(2)在运算过程中,提高学生的分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。
(2)培养学生严谨的学习态度和良好的运算习惯。
四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。
(2)正确化简二次根式的乘除混合运算结果。
2、教学难点(1)运算过程中符号的确定和根式的化简。
(2)灵活运用二次根式的乘除法则进行混合运算。
五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。
一、二次根式的乘除法法则1、积的算数平方根的性质,列如:√ab=√a·√b(a≥0,b≥0)2、乘法法则,列如:√a·√b=√ab(a≥0,b≥0),二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3、除法法则,√a÷√b=√a÷b(a≥0,b>0),二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4、有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
二、二次根式混合运算解题步骤1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。
三、二次根式化简方法二次根式是中学代数的重要内容之一,而二次根式的化简是二次根式运算的基础,学好二次根式的化简是学好二次根式的关键。
下面给同学们归纳总结了几种方法,帮助大家学好二次根。
1、乘法公式法2、因式分解法3、整体代换法4、巧构常值代入法1.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。
推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的'积。
注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。
推广:,其中a≥0,b>0,。
方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。
4.除法逆用:(a≥0,b>0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
二次根式加减乘除混合运算考点与解析1.计算:.考点:二次根式的乘除法.专题:计算题.分析:按照•=,从左至右依次相乘即可.解答:解:,=2.点评:本题考查二次根式的乘法运算,比较简单,注意在运算时要细心.2.计算:﹣32+×+|﹣3|考点:二次根式的混合运算;特殊角的三角函数值.分析:分别利用特殊角的三角函数值以及绝对值的性质化简求出即可.解答:解:﹣32+×+|﹣3|=﹣9+×+3﹣=﹣5﹣.点评:此题主要考查了二次根式的混合运算以及特殊角的三角函数值、绝对值的性质等知识,正确化简各数是解题关键.3.计算:(﹣1)2015+sin30°+(2﹣)(2+).考点:二次根式的混合运算;特殊角的三角函数值.分析:运用﹣1的奇次方等于﹣1,30°角的正弦等于,结合平方差公式进行计算,即可解决问题.解答:解:原式=﹣1++4﹣3=.点评:该题主要考查了二次根式的混合运算、特殊角的三角函数值等知识点及其应用问题;牢固掌握特殊角的三角函数值、灵活运用二次根式的混合运算法则是正确进行代数运算的基础和关键.4.计算:.考点:二次根式的混合运算.专题:计算题.分析:先根据二次根式的乘除法法则得到原式=﹣+2,然后利用二次根式的性质化简后合并即可.解答:解:原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.5.计算:(1)sin60°﹣|﹣|﹣﹣()﹣1(2)(1+)÷.考点:二次根式的混合运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据特殊角的三角函数值、分母有理化和负整数指数幂的意义得到原式=﹣﹣﹣2,然后合并即可;(2)先把括号内合并和除法运算化为乘法运算,然后约分即可.解答:解:(1)原式=﹣﹣﹣2=﹣2;(2)原式=•=x.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂和分式的混合运算.6.计算:(2015﹣π)0+|﹣2|+÷+()﹣1.考点:二次根式的混合运算;零指数幂;负整数指数幂.分析:首先根据零指数幂、负整数指数幂的运算方法,二次根式的除法的运算法则,以及绝对值的求法计算,然后根据加法交换律和结合律,求出算式(2015﹣π)0+|﹣2|+÷+()﹣1的值是多少即可.解答:解:(2015﹣π)0+|﹣2|+÷+()﹣1.=1+3=(1+2+3)=6+0=6点评:(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(4)此题还考查了绝对值的非负性和应用,要熟练掌握.7.化简:(1)(2)(3).考点:二次根式的混合运算.专题:计算题.分析:(1)、(2)利用二次根式的性质把二次根式化为最简二次根式;(3)根据平方差公式计算.解答:解:(1)原式=4;(2)原式=;(3)原式=(﹣)(+)=3﹣2=1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.8.计算:(1)(2)﹣5+6(3)×﹣(4)﹣π(精确到0.01).考点:二次根式的混合运算.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘法法则运算;(4)把≈1.414,π=3.142代入原式进行近似计算即可.解答:解:(1)原式=2+4﹣=5;(2)原式=4﹣+=3;(3)原式=﹣=20﹣3=17;(4)原式≈0.5+1.414﹣3.142≈﹣1.23.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.计算:﹣﹣()2+|2﹣|.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据绝对值的意义去绝对值,然后合并即可.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.计算:()﹣1﹣|2﹣1|+.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据负整数指数幂和分母有理化的意义得到原式3﹣2+1+,然后合并即可.解答:解:原式=3﹣(2﹣1)+=3﹣2+1+=4﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.11.计算:+(﹣)+.考点:二次根式的混合运算.分析:先进行二次根式的化简和乘法运算,然后合并.解答:解:原式=+1+3﹣3+=4﹣.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简和乘法法则.12.计算:()﹣2﹣+(﹣6)0﹣.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4﹣4+1﹣,然后进行二次根式的除法运算后合并即可.解答:解:原式=4﹣4+1﹣=1﹣2=﹣1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.13.计算:(2﹣)2+﹣()﹣1.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据完全平方公式和负整数指数幂的意义得到原式=4﹣4+3﹣3,然后合并即可.解答:解:原式=4﹣4+3﹣3=1﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.14.计算(1)(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.分析:(1)先算负指数幂,0次幂和绝对值,再进一步合并即可;(2)先利用平方差公式和二次根式的性质化简,再进一步合并即可.解答:解:(1)原式=2﹣1+3=4;(2)原式=2﹣3+﹣2=﹣3.点评:此题考查二次根式的混合运算,正确掌握二次根式的性质化简以及乘法计算公式是解决问题的关键.15.(1)计算:4×÷﹣2sin30°﹣()﹣1(2)化简:÷﹣.考点:二次根式的混合运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.分析:(1)分别进行二次根式的乘法运算、除法运算,特殊角的三角函数值,负整数指数幂等运算,然后合并;(2)根据分式的混合运算法则求解.解答:解:(1)原式=10÷﹣2×﹣2=10﹣1﹣2=7;(2)原式=•﹣=﹣=.点评:本题考查了二次根式的混合运算、特殊角的三角函数值、负整数指数幂等知识,掌握运算法则是解答本题的关键.16.计算:(1)+(﹣2013)0﹣()﹣1+|﹣3|(2)÷﹣×+.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂和负整数指数幂的意义得到原式=3+1﹣2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.解答:解:(1)原式=3+1﹣2+3=5;(2)原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.17.计算(1)÷+﹣3(2)(+)(﹣).考点:二次根式的混合运算.专题:计算题.分析:(1)先进行二次根式的除法运算,再先把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.解答:解:(1)原式=+2﹣3=0;(2)原式==a﹣2b.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(1)(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先进行乘方和开方运算,再进行乘法运算,然后进行减法运算;(2)先去括号,然后合并即可.解答:解:(1)原式=4+4×(﹣)=4﹣3=1;(2)原式=2+2﹣=2+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.19.计算题:(1)+﹣;(2)(1+)(﹣)﹣(2﹣1)2.考点:二次根式的混合运算.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的乘法运算,然后合并.解答:解:(1)原式=3+﹣=4﹣;(2)原式=﹣+﹣3﹣13+4=4﹣2﹣13.点评:本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的乘法法则以及二次根式的化简.20.计算(1)+(3+)(2)(﹣)×2(3)先化简,再求值.(a+)﹣(﹣b),其中a=2,b=3.考点:二次根式的混合运算;二次根式的化简求值.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则运算;(3)先把各二次根式化为最简二次根式得到原式=+2﹣+,然后合并后把a和b的代入即可.解答:解:(1)原式=3+3+2=8;(2)原式=2﹣2=4﹣;(3)原式=+2﹣+=+3当a=2,b=3时,原式=+3.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了二次根式的化简求值.。
二次根式的乘除在数学中,我们经常会遇到涉及二次根式的乘除运算。
二次根式是指形如√a的数,其中a为一个非负实数。
本文将详细讨论二次根式的乘法和除法运算,帮助读者更好地理解和应用这些运算法则。
一、二次根式的乘法运算二次根式的乘法运算涉及到两个二次根式的相乘。
为了方便讨论,我们假设有两个二次根式√a和√b。
那么它们的乘积可以表示为:√a * √b = √(a * b)根据上述公式,我们可以得出二次根式的乘法运算法则:将两个二次根式的被开方数相乘,结果再开平方根。
举例来说,假设我们要计算√2 * √3的结果。
按照乘法运算法则,我们可以将2和3相乘得到6,然后再开平方根,得到最终结果√6。
二、二次根式的除法运算二次根式的除法运算涉及到两个二次根式的相除。
同样地,假设有两个二次根式√a和√b,它们的除法可以表示为:√a / √b = √(a / b)根据上述公式,我们可以得出二次根式的除法运算法则:将两个二次根式的被开方数相除,结果再开平方根。
举例来说,假设我们要计算√8 / √2的结果。
按照除法运算法则,我们可以将8和2相除得到4,然后再开平方根,得到最终结果√4=2。
需要注意的是,二次根式的除法运算中,被开方数相除时需要确保除数不为零,否则运算结果将无意义。
三、二次根式的乘除混合运算在实际问题中,我们可能会遇到涉及二次根式的乘除混合运算。
解决这类运算问题的关键在于灵活运用乘法和除法运算法则,根据具体情况进行分解和合并。
举例来说,假设我们要计算(√2 + √3) * (√2 - √3)的结果。
根据乘法分配律的原理,我们可以将该式拆分为两部分,即(√2 * √2) - (√2 * √3) + (√3 * √2) - (√3 * √3)。
然后,根据乘法运算法则进行计算,得到最终结果为2 - √6 - √6 + 3 = 5 - 2√6。
类似地,如果我们要计算(√8 + √2) / (√2 + √3)的结果,可以采用分子分母同除以√2的方法,得到(√4 + 1) / (√1 + √(3/2))。