第一章 光波导基本理论
- 格式:ppt
- 大小:3.45 MB
- 文档页数:75
光波导的理论以及制备方法介绍光波导是一种通过光信号的传导来实现信息交互的技术。
它是利用光在介质中的传播特性来实现光的传输和调控的一种器件。
光波导已经成为现代通信、光电子技术和光器件研究领域中不可或缺的一部分。
光波导的理论基础是基于光在介质中的传播原理。
当光束通过介质分界面时,会产生折射现象。
这种折射现象可以用斯涅尔定律来描述,即入射角与折射角之间的正弦比等于两种介质的折射率之比。
光波导利用不同折射率的介质之间的折射现象,将光束从一种介质中导入到具有更高折射率的介质中,并通过光束的反射、折射和散射等效应,使光能够在介质中传播和传输。
制备光波导的方法有多种,包括经典的物理刻蚀法、化学沉积法、水热法等,以及现代的微电子加工技术和激光加工技术等。
下面将介绍几种常见的制备方法:1.光刻法:光刻法是一种常见的光波导制备方法。
它利用光刻胶的光敏性,通过光学曝光和显影,将需要刻蚀的部分暴露出来,然后使用物理或化学刻蚀方法将暴露的部分去除,从而形成光波导的结构。
2.离子注入法:离子注入法是一种通过离子注入技术来改变材料的折射率分布,从而形成光波导结构的方法。
它通过在材料表面注入高能离子,改变材料的折射率,并形成光波导结构。
3.RF磁控溅射法:RF磁控溅射法是一种通过溅射技术制备光波导的方法。
它利用高频电场对目标材料进行离子化,然后通过磁场聚焦离子束,使其瞄准到底片上,从而形成光波导结构。
4.激光加工法:激光加工法是一种利用激光器对材料进行加工的方法。
它通过调节激光的功率、扫描速度和扫描路径等参数,实现对光波导结构的制备。
激光加工法不仅可以实现直写制备光波导,还可以实现二光子聚焦制备光波导。
除了上述方法外,还有其他一些新型的制备光波导的方法,例如自组装法、溶胶-凝胶法、光聚合法等。
这些方法在光波导的制备中发挥着重要的作用,并为光波导的研究和应用提供了更多的可能性。
总之,光波导是一种基于光的传导原理来实现光信号传输和调控的技术。
光波导的理论以及制备方法介绍摘要由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。
光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。
光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。
重点介绍离子注入法。
光波导简介如图所示为光波导结构图表1光波导结构如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。
其中白色曲折线表示光的传播路径形式。
可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。
为了形成全反射,图中要求n1>n0,n2。
一般来讲,被限制的方向微米量级的尺度。
图表2光波导模型如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。
光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点:(1)光密度大大增强光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。
(2)光的衍射被限制从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。
(3)微型元件集成化微米量级的尺寸集成度高,相应的成本降低(4)某些特性最优化非线性倍频阈值降低,波导激光阈值降低综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。
光波导的分类一般来讲,光波导可以分为以下几个大类别:图表3平面波导(planar)图表4光纤(fiber)图表5条形波导(channel)图表6脊型波导(ridge)上面介绍了几大类光波导形式,实际上这只是基本的几种形式,每一种都可以加以变化以适应不同环境及应用的需求。
——自学《光波导理论与技术李玉权版》笔录第 1 章绪论 (2)1.1 光通讯技术 (2)1.2 光通讯的发展过程 (2)1.3 光通讯重点技术 (3)光纤 (3)光源和光发送机 (5)第 2 章电磁场理论基础 (7)2.1 电磁场基本方程 (7)麦克斯韦方程组 (7)电磁场界限条件 (8)颠簸方程和亥姆霍兹方程 (10)柱型波导中的场方程 (11)2.2 各向同性媒质中的平面电磁波 (13)无界平均媒质中的平均电磁波 (13)平面电磁波的偏振状态 (13)平面波的反射和折射 (15)非理想媒质中的平面电磁波 (16)2.3 各向异性媒质中的平面电磁波 (18)电各向异性媒质 (18)电各向异性媒质中的平面波 (18)2.4 电磁波理论的短波长极限——几何光学理论 (22)几何光学的基本方程—— eikonal 方程 (22)光芒流传的路径方程 (24)路径方程解的两个特例 (25)折射定律与反射定律 (28)第 1 章绪论1.1 光通讯技术光通讯的主要优势表此刻以下几个方面:( 1)巨大的传输带宽石英光纤的工作频次为 0.8 ~ 1.65 m,单根光纤的可用频带几乎达到了200THz。
即即是在1.55 m邻近的低消耗窗口,其带宽也超出了15THz 。
( 2)极低的传输消耗当前工业制造的光纤载 1.3 m邻近,其消耗在0.3 ~ 0.4dB/ km范围之内,在1.55 m 波段已降至 0.2dB / km以下。
(3)光纤通讯可抗强电磁扰乱,不向外辐射电磁波,这样就提升了这类通讯手段的保密性,同时也不会产生电磁污染。
1.2 光通讯的发展过程准同步数字系统( PDH)同步光网络( SONET)全光网络图 1.1.1 光纤通讯发展的三个阶段一个最基本的光纤通讯系统的构成:图 1.1.2 光纤通讯系统原理框架图1.3 光通讯重点技术1.3.1 光纤光纤是构成光网络的传输介质,当前通讯光纤所有都是以石英为基础资料制作的,它有纤芯、包层及保护层构成,横截面如图 1.1.3 所示。